准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)...准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)影像为数据源,选择归一化植被指数(normalized difference vegetation index,NDVI)、增强植被指数(enhanced vegetation index,EVI)、宽动态植被指数(wide dynamic range vegetation index,WDRVI)、归一化水指数(normalized difference water index,NDWI)4个特征,结合实地调查样本点,采用随机森林分类算法,提取黑龙江省黑河市嫩江县玉米与大豆种植面积。研究表明,区分玉米与大豆的最佳时段为9月下旬至10月上旬,即大豆已收获而玉米未收获的时段,在4个待选特征中,NDVI、NDWI与WDRVI指数组合表现最佳;随机森林算法与最大似然算法、支持向量机算法相比,分类精度更高,其总体分类精度为84.82%,Kappa系数为77.42%。玉米制图精度为91.49%,用户精度为93.48%;大豆制图精度为91.14%,用户精度为82.76%。该方法为大区域农作物的分类提供重要参考和借鉴价值。展开更多
准确预测区域尺度的小麦成熟期,指挥麦收机械化作业有序开展,具有十分重要的社会和经济效益。该文针对目前区域冬小麦成熟期预测中时效性差、缺乏空间分布以及缺少定量描述等突出问题,选择华北地区河北、河南和山东3省冬小麦为研究对象...准确预测区域尺度的小麦成熟期,指挥麦收机械化作业有序开展,具有十分重要的社会和经济效益。该文针对目前区域冬小麦成熟期预测中时效性差、缺乏空间分布以及缺少定量描述等突出问题,选择华北地区河北、河南和山东3省冬小麦为研究对象,首先基于S-G滤波后的2013年冬小麦生育期时间序列MODIS LAI,采用动态阈值法获取抽穗期具体日期,即叶面积指数(LAI)达到峰值时的具体日期;然后基于由2008-2012年农业气象资料与地面气象资料构建的抽穗-成熟期有效积温模型和总辐射模型,逐个栅格单元计算MODIS LAI获取的抽穗期具体日期到当前日期的积温、太阳辐射总量,并结合全球多模式集合预报(THORPEX Interactive Grand Global Ensemble,TIGGE)资料对当前日期(5月10号至6月8号)之后的16 d冬小麦成熟期进行逐日动态预测以得到全部区域的成熟期预测值;最后采用农业气象站点的成熟期观测值对预测结果进行验证,结果表明:冬小麦成熟期预测值与观测值的决定系数R2为0.92,均方根误差RMSE约为3 d,两者具有良好的相关性。该研究方法对其他大区域的农作物成熟期预测具有借鉴价值。展开更多
文摘准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)影像为数据源,选择归一化植被指数(normalized difference vegetation index,NDVI)、增强植被指数(enhanced vegetation index,EVI)、宽动态植被指数(wide dynamic range vegetation index,WDRVI)、归一化水指数(normalized difference water index,NDWI)4个特征,结合实地调查样本点,采用随机森林分类算法,提取黑龙江省黑河市嫩江县玉米与大豆种植面积。研究表明,区分玉米与大豆的最佳时段为9月下旬至10月上旬,即大豆已收获而玉米未收获的时段,在4个待选特征中,NDVI、NDWI与WDRVI指数组合表现最佳;随机森林算法与最大似然算法、支持向量机算法相比,分类精度更高,其总体分类精度为84.82%,Kappa系数为77.42%。玉米制图精度为91.49%,用户精度为93.48%;大豆制图精度为91.14%,用户精度为82.76%。该方法为大区域农作物的分类提供重要参考和借鉴价值。
文摘准确预测区域尺度的小麦成熟期,指挥麦收机械化作业有序开展,具有十分重要的社会和经济效益。该文针对目前区域冬小麦成熟期预测中时效性差、缺乏空间分布以及缺少定量描述等突出问题,选择华北地区河北、河南和山东3省冬小麦为研究对象,首先基于S-G滤波后的2013年冬小麦生育期时间序列MODIS LAI,采用动态阈值法获取抽穗期具体日期,即叶面积指数(LAI)达到峰值时的具体日期;然后基于由2008-2012年农业气象资料与地面气象资料构建的抽穗-成熟期有效积温模型和总辐射模型,逐个栅格单元计算MODIS LAI获取的抽穗期具体日期到当前日期的积温、太阳辐射总量,并结合全球多模式集合预报(THORPEX Interactive Grand Global Ensemble,TIGGE)资料对当前日期(5月10号至6月8号)之后的16 d冬小麦成熟期进行逐日动态预测以得到全部区域的成熟期预测值;最后采用农业气象站点的成熟期观测值对预测结果进行验证,结果表明:冬小麦成熟期预测值与观测值的决定系数R2为0.92,均方根误差RMSE约为3 d,两者具有良好的相关性。该研究方法对其他大区域的农作物成熟期预测具有借鉴价值。