Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like cov...Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.展开更多
光催化二氧化碳还原成烃类化合物是解决能源短缺和环境污染的重要途径。而构建复合物光催化剂可以有效地解决单一光催化剂的缺点,并且提高二氧化碳还原活性。尽管对复合物光催化剂已经做了很多研究,然而对其活性增强的内在机制还缺乏理...光催化二氧化碳还原成烃类化合物是解决能源短缺和环境污染的重要途径。而构建复合物光催化剂可以有效地解决单一光催化剂的缺点,并且提高二氧化碳还原活性。尽管对复合物光催化剂已经做了很多研究,然而对其活性增强的内在机制还缺乏理论认识。本文采用密度泛函理论计算方法研究了二维/二维BP/g-C_(3)N_(4)复合模型的电子性质和CO_(2)还原反应过程。通过对能带位置和界面电子相互作用的综合分析发现,在BP/g-C_(3)N_(4)异质结中,光生载流子的迁移遵循S型异质结光催化机制。与单一的g-C_(3)N_(4)相比,这种异质结可以实现光生载流子的高效分离并且拥有良好的氧化还原能力。此外,通过对比研究CO_(2)在g-C_(3)N_(4)和BP/g-C_(3)N_(4)还原反应过程发现,异质结使CO_(2)还原反应的最大能垒从1.48 e V降低到1.22e V。因此,BP/g-C_(3)N_(4)异质结在理论上被证明是一种优良的CO_(2)还原光催化剂。这项工作有助于了解BP改性对g-C_(3)N_(4)光催化活性的影响,也为其他高性能CO_(2)还原光催化剂的设计提供理论依据。展开更多
Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high...Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.展开更多
Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully int...Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully introduced into the metallic Pd to weaken its hydrogen‐adsorption strength to improve its interfacial H_(2)‐evolution rate via the Pd‐Cu alloying effect.Herein,the ultrasmall Pd_(100−x)Cu_(x) alloy nanodots(2−5 nm)as a novel H_(2)‐evolution cocatalyst were integrated with the TiO_(2) through a simple NaH_(2)PO_(2)‐mediated co‐deposition route.The resulting Pd_(100−x)Cu_(x)/TiO_(2) sample shows the significantly enhanced photocatalytic H_(2)‐generation performance(269.2μmol h^(−1)),which is much higher than the bare TiO2.Based on in situ irradiated X‐ray photoelectron spectroscopy(ISI‐XPS)and density functional theory(DFT)results,the as‐formed Pd_(100−x)Cu_(x) alloy nanodots can effectively promote the separation of photo‐generated charges and weak the adsorption strength for hydrogen to optimize the process of hydrogen‐desorption process on Pd_(75)Cu_(25) alloy,thus leading to high photocatalytic H_(2)‐evolution activity.Herein,the weakened H adsorption of Pd_(75)Cu_(25) cocatalyst can be ascribed to the formation of electron‐rich Pd after the introduction of weak electronegativity Cu.The present work about optimizing electronic structure for promoting interfacial reaction activity provides a new sight for the development of the highly efficient photocatalysts.展开更多
Effective charge separation and rapid interfacial H_(2) production are imperative for the construction of efficient photocatalysts.Compared to Pt,the metallic Ag co‐catalyst with its strong electron‐trapping ability...Effective charge separation and rapid interfacial H_(2) production are imperative for the construction of efficient photocatalysts.Compared to Pt,the metallic Ag co‐catalyst with its strong electron‐trapping ability and excellent electronic conductivity typically exhibits an extremely limited photocatalytic H_(2-)evolution rate owing to its sluggish interfacial H_(2)‐generation reaction.In this study,amorphous AgSe_(x) was incorporated in situ onto metallic Ag as a novel and excellent H_(2)‐evolution active site to boost the interfacial H_(2)‐generation rate of Ag nanoparticles in a TiO_(2)/Ag system.Core‐shell Ag@AgSe_(x)nanoparticle‐modified TiO_(2)photocatalysts were prepared via a two‐step pathway involving the photodeposition of metallic Ag and the selective surface selenization of metallic Ag to yield amorphous AgSe_(x)shells.The as‐prepared TiO_(2)/Ag@AgSe_(x)(20μL)photocatalyst exhibited an excellent H_(2‐)production performance of 853.0μmol h^(-1)g^(-1),prominently outperforming the TiO_(2)and TiO_(2)/Ag samples by factors of 11.6 and 2.4,respectively.Experimental investigations and DFT calculations revealed that the enhanced H_(2‐)generation activity of the TiO_(2)/Ag@AgSe_(x)photocatalyst could be accounted by synergistic interactions of the Ag@AgSe_(x)co‐catalyst.Essentially,the metallic Ag core could quickly capture and transport the photoinduced electrons from TiO_(2)to the amorphous AgSe_(x)shell,whereas the amorphous AgSe_(x)shell provided large active sites for boosting the interfacial H_(2)evolution.This study offers a facile route for the construction of novel core‐shell co‐catalysts for sustainable H_(2)evolution.展开更多
The interaction between a gas molecule and photocatalyst is vital to trigger photocatalytic reaction.The surface state of photocatalyst affects much in this interaction.Herein,adsorption of H2O molecules on s-triazine...The interaction between a gas molecule and photocatalyst is vital to trigger photocatalytic reaction.The surface state of photocatalyst affects much in this interaction.Herein,adsorption of H2O molecules on s-triazine-based g-C3N4 was thoroughly studied by first-principle calculation.Although various initial adsorption models with multifarious locations of H2O molecules were built,the optimized models with strong adsorption energy pointed to the same adsorption configuration,in which the H2O molecule hold an upright orientation above the corrugated g-C3N4 monolayer.An intermolecular O-H…N hydrogen bond formed via the binding of a polar O-H bond in H2O molecule and a two-coordinated electron-rich nitrogen atom in g-C3N4.Under the bridging effect of this intermolecular hydrogen bond,electrons would transfer from g-C3N4 to the H2O molecule,thereby lowering the Fermi level and enlarging work function of g-C3N4.Interestingly,regardless of the substitute,i.e.g-C3N4 multilayer,large supercell and nanotube,this adsorption system was highly reproducible,as its geometry structure and electronic property remained unchanged.In addition,the effect of nonmetal element doping on adsorption energy was explored.This work not only disclosed a highly preferential H2O adsorbed g-C3N4 architecture established by intermolecular hydrogen bond,but also contributed to the deep understanding and optimized design in water-splitting process on g-C3N4-based photocatalysts.展开更多
文摘Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.
文摘光催化二氧化碳还原成烃类化合物是解决能源短缺和环境污染的重要途径。而构建复合物光催化剂可以有效地解决单一光催化剂的缺点,并且提高二氧化碳还原活性。尽管对复合物光催化剂已经做了很多研究,然而对其活性增强的内在机制还缺乏理论认识。本文采用密度泛函理论计算方法研究了二维/二维BP/g-C_(3)N_(4)复合模型的电子性质和CO_(2)还原反应过程。通过对能带位置和界面电子相互作用的综合分析发现,在BP/g-C_(3)N_(4)异质结中,光生载流子的迁移遵循S型异质结光催化机制。与单一的g-C_(3)N_(4)相比,这种异质结可以实现光生载流子的高效分离并且拥有良好的氧化还原能力。此外,通过对比研究CO_(2)在g-C_(3)N_(4)和BP/g-C_(3)N_(4)还原反应过程发现,异质结使CO_(2)还原反应的最大能垒从1.48 e V降低到1.22e V。因此,BP/g-C_(3)N_(4)异质结在理论上被证明是一种优良的CO_(2)还原光催化剂。这项工作有助于了解BP改性对g-C_(3)N_(4)光催化活性的影响,也为其他高性能CO_(2)还原光催化剂的设计提供理论依据。
文摘Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.
文摘Noble metal palladium(Pd)is well‐known as excellent photocatalytic cocatalyst,but its strong adsorption to hydrogen causes its limited H2‐evolution activity.In this study,the transition metal Cu was successfully introduced into the metallic Pd to weaken its hydrogen‐adsorption strength to improve its interfacial H_(2)‐evolution rate via the Pd‐Cu alloying effect.Herein,the ultrasmall Pd_(100−x)Cu_(x) alloy nanodots(2−5 nm)as a novel H_(2)‐evolution cocatalyst were integrated with the TiO_(2) through a simple NaH_(2)PO_(2)‐mediated co‐deposition route.The resulting Pd_(100−x)Cu_(x)/TiO_(2) sample shows the significantly enhanced photocatalytic H_(2)‐generation performance(269.2μmol h^(−1)),which is much higher than the bare TiO2.Based on in situ irradiated X‐ray photoelectron spectroscopy(ISI‐XPS)and density functional theory(DFT)results,the as‐formed Pd_(100−x)Cu_(x) alloy nanodots can effectively promote the separation of photo‐generated charges and weak the adsorption strength for hydrogen to optimize the process of hydrogen‐desorption process on Pd_(75)Cu_(25) alloy,thus leading to high photocatalytic H_(2)‐evolution activity.Herein,the weakened H adsorption of Pd_(75)Cu_(25) cocatalyst can be ascribed to the formation of electron‐rich Pd after the introduction of weak electronegativity Cu.The present work about optimizing electronic structure for promoting interfacial reaction activity provides a new sight for the development of the highly efficient photocatalysts.
文摘Effective charge separation and rapid interfacial H_(2) production are imperative for the construction of efficient photocatalysts.Compared to Pt,the metallic Ag co‐catalyst with its strong electron‐trapping ability and excellent electronic conductivity typically exhibits an extremely limited photocatalytic H_(2-)evolution rate owing to its sluggish interfacial H_(2)‐generation reaction.In this study,amorphous AgSe_(x) was incorporated in situ onto metallic Ag as a novel and excellent H_(2)‐evolution active site to boost the interfacial H_(2)‐generation rate of Ag nanoparticles in a TiO_(2)/Ag system.Core‐shell Ag@AgSe_(x)nanoparticle‐modified TiO_(2)photocatalysts were prepared via a two‐step pathway involving the photodeposition of metallic Ag and the selective surface selenization of metallic Ag to yield amorphous AgSe_(x)shells.The as‐prepared TiO_(2)/Ag@AgSe_(x)(20μL)photocatalyst exhibited an excellent H_(2‐)production performance of 853.0μmol h^(-1)g^(-1),prominently outperforming the TiO_(2)and TiO_(2)/Ag samples by factors of 11.6 and 2.4,respectively.Experimental investigations and DFT calculations revealed that the enhanced H_(2‐)generation activity of the TiO_(2)/Ag@AgSe_(x)photocatalyst could be accounted by synergistic interactions of the Ag@AgSe_(x)co‐catalyst.Essentially,the metallic Ag core could quickly capture and transport the photoinduced electrons from TiO_(2)to the amorphous AgSe_(x)shell,whereas the amorphous AgSe_(x)shell provided large active sites for boosting the interfacial H_(2)evolution.This study offers a facile route for the construction of novel core‐shell co‐catalysts for sustainable H_(2)evolution.
文摘The interaction between a gas molecule and photocatalyst is vital to trigger photocatalytic reaction.The surface state of photocatalyst affects much in this interaction.Herein,adsorption of H2O molecules on s-triazine-based g-C3N4 was thoroughly studied by first-principle calculation.Although various initial adsorption models with multifarious locations of H2O molecules were built,the optimized models with strong adsorption energy pointed to the same adsorption configuration,in which the H2O molecule hold an upright orientation above the corrugated g-C3N4 monolayer.An intermolecular O-H…N hydrogen bond formed via the binding of a polar O-H bond in H2O molecule and a two-coordinated electron-rich nitrogen atom in g-C3N4.Under the bridging effect of this intermolecular hydrogen bond,electrons would transfer from g-C3N4 to the H2O molecule,thereby lowering the Fermi level and enlarging work function of g-C3N4.Interestingly,regardless of the substitute,i.e.g-C3N4 multilayer,large supercell and nanotube,this adsorption system was highly reproducible,as its geometry structure and electronic property remained unchanged.In addition,the effect of nonmetal element doping on adsorption energy was explored.This work not only disclosed a highly preferential H2O adsorbed g-C3N4 architecture established by intermolecular hydrogen bond,but also contributed to the deep understanding and optimized design in water-splitting process on g-C3N4-based photocatalysts.