随着预训练语言模型在自然语言处理(NLP)任务上的应用,意图检测(ID)和槽位填充(SF)联合建模提高了口语理解的性能。现有方法大多关注意图和槽位的相互作用,忽略了差异文本序列建模对口语理解(SLU)任务的影响。因此,提出一种基于多任务...随着预训练语言模型在自然语言处理(NLP)任务上的应用,意图检测(ID)和槽位填充(SF)联合建模提高了口语理解的性能。现有方法大多关注意图和槽位的相互作用,忽略了差异文本序列建模对口语理解(SLU)任务的影响。因此,提出一种基于多任务学习的意图检测和槽位填充联合方法(IDSFML)。首先,使用随机掩盖mask策略构造差异文本,设计结合自编码器和注意力机制的神经网络(AEA)结构,为口语理解任务融入差异文本序列的特征;其次,设计相似性分布任务,使差异文本和原始文本的表征相似;最后,联合训练ID、SF和差异文本序列相似性分布三个任务。在航班旅行信息系统(ATIS)和SNIPS数据集上的实验结果表明,IDSFML与表现次优的基线方法SASGBC(Self-Attention and Slot-Gated on top of BERT with CRF)相比,槽位填充F1值分别提升了1.9和1.6个百分点,意图检测准确率分别提升了0.2和0.4个百分点,提高了口语理解任务的准确率。展开更多
在文旅领域智能问答中,用户问句文本表征稀疏、口语化表达、一词多义及特定领域词汇的识别困难使得常见的匹配模型难以将用户问句与标准问句进行精准匹配。针对此问题,本文构建了文旅客服问句匹配数据集和相应的领域词典,在此基础上提...在文旅领域智能问答中,用户问句文本表征稀疏、口语化表达、一词多义及特定领域词汇的识别困难使得常见的匹配模型难以将用户问句与标准问句进行精准匹配。针对此问题,本文构建了文旅客服问句匹配数据集和相应的领域词典,在此基础上提出一种融合领域词典的文旅问句匹配模型SBIDD(Improved SBERT Model for Integrating Domain Dictionaries)。模型利用Sentence-BERT对问句进行向量化表示,在孪生网络模型中融入领域词典,增强问句的领域词权重,使得模型对领域词汇的识别能力大幅提升。在自建数据集和公开数据集ATEC 2018 NLP上分别进行实验。结果表明,构建的模型与5种经典文本匹配模型DSSM、BiMPM、ESIM、IMAF、TSFR-RM及基线模型SBERT相比效果更优,F1值达到95.65%,比基线模型提升了2.75%,且模型在检索任务上表现出更高的适配性和鲁棒性。展开更多
针对传统的群组推荐预定义策略过于单一,忽视用户与项目之间的交互性,无法捕捉时间推移所造成的用户偏好迁移等问题,提出一种融合时间序列和注意力机制的群组推荐模型TAGR(time-attitation group rememdation)。首先通过层次聚类划分出...针对传统的群组推荐预定义策略过于单一,忽视用户与项目之间的交互性,无法捕捉时间推移所造成的用户偏好迁移等问题,提出一种融合时间序列和注意力机制的群组推荐模型TAGR(time-attitation group rememdation)。首先通过层次聚类划分出高相似度群组,其次引入时间序列模型来捕捉用户偏好迁移过程,获取每个时刻用户行为的兴趣偏好,并聚合各时刻兴趣偏好作为用户偏好。最后结合注意力机制,获得用户权重进行偏好融合来表示群组偏好,最终作为推荐模型的输入。通过在Goodbook与MovieLens数据集上与NCF、AGREE等模型进行对比,TAGR在归一化折扣累计增益和命中率2个指标上都得到了显著提高。展开更多
文摘随着预训练语言模型在自然语言处理(NLP)任务上的应用,意图检测(ID)和槽位填充(SF)联合建模提高了口语理解的性能。现有方法大多关注意图和槽位的相互作用,忽略了差异文本序列建模对口语理解(SLU)任务的影响。因此,提出一种基于多任务学习的意图检测和槽位填充联合方法(IDSFML)。首先,使用随机掩盖mask策略构造差异文本,设计结合自编码器和注意力机制的神经网络(AEA)结构,为口语理解任务融入差异文本序列的特征;其次,设计相似性分布任务,使差异文本和原始文本的表征相似;最后,联合训练ID、SF和差异文本序列相似性分布三个任务。在航班旅行信息系统(ATIS)和SNIPS数据集上的实验结果表明,IDSFML与表现次优的基线方法SASGBC(Self-Attention and Slot-Gated on top of BERT with CRF)相比,槽位填充F1值分别提升了1.9和1.6个百分点,意图检测准确率分别提升了0.2和0.4个百分点,提高了口语理解任务的准确率。
文摘在文旅领域智能问答中,用户问句文本表征稀疏、口语化表达、一词多义及特定领域词汇的识别困难使得常见的匹配模型难以将用户问句与标准问句进行精准匹配。针对此问题,本文构建了文旅客服问句匹配数据集和相应的领域词典,在此基础上提出一种融合领域词典的文旅问句匹配模型SBIDD(Improved SBERT Model for Integrating Domain Dictionaries)。模型利用Sentence-BERT对问句进行向量化表示,在孪生网络模型中融入领域词典,增强问句的领域词权重,使得模型对领域词汇的识别能力大幅提升。在自建数据集和公开数据集ATEC 2018 NLP上分别进行实验。结果表明,构建的模型与5种经典文本匹配模型DSSM、BiMPM、ESIM、IMAF、TSFR-RM及基线模型SBERT相比效果更优,F1值达到95.65%,比基线模型提升了2.75%,且模型在检索任务上表现出更高的适配性和鲁棒性。
文摘针对传统的群组推荐预定义策略过于单一,忽视用户与项目之间的交互性,无法捕捉时间推移所造成的用户偏好迁移等问题,提出一种融合时间序列和注意力机制的群组推荐模型TAGR(time-attitation group rememdation)。首先通过层次聚类划分出高相似度群组,其次引入时间序列模型来捕捉用户偏好迁移过程,获取每个时刻用户行为的兴趣偏好,并聚合各时刻兴趣偏好作为用户偏好。最后结合注意力机制,获得用户权重进行偏好融合来表示群组偏好,最终作为推荐模型的输入。通过在Goodbook与MovieLens数据集上与NCF、AGREE等模型进行对比,TAGR在归一化折扣累计增益和命中率2个指标上都得到了显著提高。