研究动态时间规整(Dynamic Time Warping)语音识别算法问题,传统动态时间规整方法需要存储较大的矩阵,直接计算将会占据较大的空间,计算量也比较大,对系统硬件要求比较高。为了减小DTW算法的运算量,提高识别速度,对DTW语音识别算法进行...研究动态时间规整(Dynamic Time Warping)语音识别算法问题,传统动态时间规整方法需要存储较大的矩阵,直接计算将会占据较大的空间,计算量也比较大,对系统硬件要求比较高。为了减小DTW算法的运算量,提高识别速度,对DTW语音识别算法进行优化改进。将局部路径约束和整体路径约束相结合,仅在一个规定的宽度内搜索动态规划路径,计算累积匹配距离。仿真实验结果表明该方法不仅可以降低运算负载,提高识别速度,而且能在一定程度上提高语音识别率。展开更多
文摘研究动态时间规整(Dynamic Time Warping)语音识别算法问题,传统动态时间规整方法需要存储较大的矩阵,直接计算将会占据较大的空间,计算量也比较大,对系统硬件要求比较高。为了减小DTW算法的运算量,提高识别速度,对DTW语音识别算法进行优化改进。将局部路径约束和整体路径约束相结合,仅在一个规定的宽度内搜索动态规划路径,计算累积匹配距离。仿真实验结果表明该方法不仅可以降低运算负载,提高识别速度,而且能在一定程度上提高语音识别率。