无人机(Unmanned aerial vehicle,UAV)遥感图像拼接是指将两幅或多幅具有相似场景内容的高分辨率无人机遥感图像拼接为一幅包含更多信息的大视野图像,在军事和地理测绘等领域得到了广泛应用。传统算法通常依赖于手工特征,无法有效地提...无人机(Unmanned aerial vehicle,UAV)遥感图像拼接是指将两幅或多幅具有相似场景内容的高分辨率无人机遥感图像拼接为一幅包含更多信息的大视野图像,在军事和地理测绘等领域得到了广泛应用。传统算法通常依赖于手工特征,无法有效地提取弱纹理图像的特征。若图像之间视差较大时,会导致拼接无法进行。为了解决上述问题,基于计算机视觉组(Visual Geometry Group-16,VGG-16)网络结合孪生网络框架提出了一种用于无人机遥感图像拼接的有监督模型。基于VGG-16网络设计了权值共享的孪生特征提取网络,解决特征提取不充分的问题。设计了能够回归图像之间空间变换关系的回归网络,并使用分组卷积代替普通卷积以提升网络速度。同时,为了解决将图像之间真实变换关系作为标签的图像拼接数据集难以获取的问题,基于一定程度的仿射变换,构建了自己的数据集。实验结果表明,本方法在无人机遥感图像拼接的主观视觉效果以及客观评价指标上均有较好的结果,与ORB算法(Oriented FAST and rotated BRIEF,ORB)和CAU-DHE算法(Content-aware unsupervised deep homography estimation,CAU-DHE)相比,主观视觉上图像拼接精度提升,结构相似性分别提高了约12.4%和2.3%,均方根误差分别降低了约15.0%和4.4%。展开更多
为了改善遥感图像超分辨重建(super-resolution reconstruction,SRR)效果,针对以往仅适用于单特征空间的稀疏字典超分辨算法,提出同时适用于两个特征空间的双参数Beta过程联合字典(Beta process joint dictionary,BPJD)遥感图像SRR方法...为了改善遥感图像超分辨重建(super-resolution reconstruction,SRR)效果,针对以往仅适用于单特征空间的稀疏字典超分辨算法,提出同时适用于两个特征空间的双参数Beta过程联合字典(Beta process joint dictionary,BPJD)遥感图像SRR方法。首先,根据遥感图像退化模型生成训练样本图像,并分别对高、低分辨率图像进行分块和Gibbs采样,生成字典训练样本。然后,依据BPJD,建立连接高、低分辨率遥感图像空间的双参数联合稀疏字典,将字典稀疏系数分解为系数权值和字典原子的乘积,依据字典原子指标训练和更新字典,得到高低分辨率联合字典映射矩阵。最后,进行遥感图像超分辨稀疏重构。实验结果表明:所提方法可自适应地缩小字典尺寸,能以更小尺寸的稀疏字典重建更高质量的超分辨遥感图像,重建结果图像的纹理细节信息更丰富,峰值信噪比和结构相似性度均有提高。展开更多
文摘无人机(Unmanned aerial vehicle,UAV)遥感图像拼接是指将两幅或多幅具有相似场景内容的高分辨率无人机遥感图像拼接为一幅包含更多信息的大视野图像,在军事和地理测绘等领域得到了广泛应用。传统算法通常依赖于手工特征,无法有效地提取弱纹理图像的特征。若图像之间视差较大时,会导致拼接无法进行。为了解决上述问题,基于计算机视觉组(Visual Geometry Group-16,VGG-16)网络结合孪生网络框架提出了一种用于无人机遥感图像拼接的有监督模型。基于VGG-16网络设计了权值共享的孪生特征提取网络,解决特征提取不充分的问题。设计了能够回归图像之间空间变换关系的回归网络,并使用分组卷积代替普通卷积以提升网络速度。同时,为了解决将图像之间真实变换关系作为标签的图像拼接数据集难以获取的问题,基于一定程度的仿射变换,构建了自己的数据集。实验结果表明,本方法在无人机遥感图像拼接的主观视觉效果以及客观评价指标上均有较好的结果,与ORB算法(Oriented FAST and rotated BRIEF,ORB)和CAU-DHE算法(Content-aware unsupervised deep homography estimation,CAU-DHE)相比,主观视觉上图像拼接精度提升,结构相似性分别提高了约12.4%和2.3%,均方根误差分别降低了约15.0%和4.4%。
文摘为了改善遥感图像超分辨重建(super-resolution reconstruction,SRR)效果,针对以往仅适用于单特征空间的稀疏字典超分辨算法,提出同时适用于两个特征空间的双参数Beta过程联合字典(Beta process joint dictionary,BPJD)遥感图像SRR方法。首先,根据遥感图像退化模型生成训练样本图像,并分别对高、低分辨率图像进行分块和Gibbs采样,生成字典训练样本。然后,依据BPJD,建立连接高、低分辨率遥感图像空间的双参数联合稀疏字典,将字典稀疏系数分解为系数权值和字典原子的乘积,依据字典原子指标训练和更新字典,得到高低分辨率联合字典映射矩阵。最后,进行遥感图像超分辨稀疏重构。实验结果表明:所提方法可自适应地缩小字典尺寸,能以更小尺寸的稀疏字典重建更高质量的超分辨遥感图像,重建结果图像的纹理细节信息更丰富,峰值信噪比和结构相似性度均有提高。