水滴平均体积直径(Mean volumetric diameter,MVD)和液态水含量(Liquid water content,LWC)是两个影响飞机结冰的重要气象参数,但在实际中难以准确测得,如果能够实时、准确地获取这两个参数可以为积冰预测和飞机适航认证标准的建立提供...水滴平均体积直径(Mean volumetric diameter,MVD)和液态水含量(Liquid water content,LWC)是两个影响飞机结冰的重要气象参数,但在实际中难以准确测得,如果能够实时、准确地获取这两个参数可以为积冰预测和飞机适航认证标准的建立提供一些指导。文中提出了一种基于遗传算法优化神经网络的结冰气象参数预测模型。以不同测点组合的冰厚和结冰速率、环境温度、飞行速度和机翼迎角为输入参数,结冰气象参数MVD和LWC为输出参数,构建遗传算法优化的结冰气象参数预测模型,并通过预测模型对数值计算测试组数据和结冰风洞实验数据的结冰气象参数进行预测。结果表明,基于遗传算法优化Elman神经网络的预测模型对结冰气象参数的测试组预测相对误差在10%以内,实验数据相对误差在20%以内,该方法具有一定的可行性。展开更多
Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing sy...Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing systems.In this pursuit,the present study envisages the evaluation of the stress at the icesubstrate interface to guide the design of experimental set-ups and improve the measurement accuracy of shear strength using the finite element analysis(FEA)method.By considering such factors as the peeling stress,maximum von-mises stress and uniformity of stress,the height and radius of ice and the loading height are investigated.Based on the simulation results,appropriate parameters are selected for the experimental validation.Simulation results show that the peeling stress is decreased by reducing the loading height and increasing the height of ice.Higher ice,increasing loading height and smaller ice radius are found to be beneficial for the uniformity of stress.To avoid cracks or ice-breaking,it is imperative that the ice should be of a small radius and greater height.Parameters including the ice height of 25 mm,radius of 20 mm,and loading height of 9 mm are adopted in the experiment.The results of FEA and the experimental validation can significantly enhance the measurement accuracy of shear strength.展开更多
A hybrid airfoil inverse design method according to the target pressure distribution and the impingement efficiency is presented.The method is developed to design hybrid airfoils that simulate the droplet impingement ...A hybrid airfoil inverse design method according to the target pressure distribution and the impingement efficiency is presented.The method is developed to design hybrid airfoils that simulate the droplet impingement and ice accretion of full-scale airfoil.Flow field and droplet impingement around the full-scale airfoil are calculated to obtain pressure distribution and impingement efficiency firstly.The Navier-Strokes(N-S)solver is used in flow field calculation to improve calculation precision.The droplet impingement and ice accretion on the airfoil are performed by FENSAP-ICE.Once the target chord or original airfoil is given,the hybrid airfoil geometries can be computed.The designed hybrid airfoil consists of full-scale leading edges and redesigned aft-section.The hybrid airfoil can be tested under full-scale conditions to produce full-scale ice accretion in the exiting icing tunnels which are too small to perform ice accretion testing of full-scale airfoils.Moreover,the ice shapes formed on the full-scale and hybrid airfoils are compared at various attack angles.The results demonstrate that ice shapes between hybrid and full-scale airfoils match well and the developed method is effective.展开更多
文摘水滴平均体积直径(Mean volumetric diameter,MVD)和液态水含量(Liquid water content,LWC)是两个影响飞机结冰的重要气象参数,但在实际中难以准确测得,如果能够实时、准确地获取这两个参数可以为积冰预测和飞机适航认证标准的建立提供一些指导。文中提出了一种基于遗传算法优化神经网络的结冰气象参数预测模型。以不同测点组合的冰厚和结冰速率、环境温度、飞行速度和机翼迎角为输入参数,结冰气象参数MVD和LWC为输出参数,构建遗传算法优化的结冰气象参数预测模型,并通过预测模型对数值计算测试组数据和结冰风洞实验数据的结冰气象参数进行预测。结果表明,基于遗传算法优化Elman神经网络的预测模型对结冰气象参数的测试组预测相对误差在10%以内,实验数据相对误差在20%以内,该方法具有一定的可行性。
基金supported by the National Natural Science Foundation of China(No.11832012).
文摘Accumulation of ice on airfoils and engines seriously endangers the safety of the fight.The accurate measurement of adhesion strength at the ice-substrate interface plays a vital role in the design of anti/de-icing systems.In this pursuit,the present study envisages the evaluation of the stress at the icesubstrate interface to guide the design of experimental set-ups and improve the measurement accuracy of shear strength using the finite element analysis(FEA)method.By considering such factors as the peeling stress,maximum von-mises stress and uniformity of stress,the height and radius of ice and the loading height are investigated.Based on the simulation results,appropriate parameters are selected for the experimental validation.Simulation results show that the peeling stress is decreased by reducing the loading height and increasing the height of ice.Higher ice,increasing loading height and smaller ice radius are found to be beneficial for the uniformity of stress.To avoid cracks or ice-breaking,it is imperative that the ice should be of a small radius and greater height.Parameters including the ice height of 25 mm,radius of 20 mm,and loading height of 9 mm are adopted in the experiment.The results of FEA and the experimental validation can significantly enhance the measurement accuracy of shear strength.
基金Supported by the National Natural Science Foundation of China(10972106)
文摘A hybrid airfoil inverse design method according to the target pressure distribution and the impingement efficiency is presented.The method is developed to design hybrid airfoils that simulate the droplet impingement and ice accretion of full-scale airfoil.Flow field and droplet impingement around the full-scale airfoil are calculated to obtain pressure distribution and impingement efficiency firstly.The Navier-Strokes(N-S)solver is used in flow field calculation to improve calculation precision.The droplet impingement and ice accretion on the airfoil are performed by FENSAP-ICE.Once the target chord or original airfoil is given,the hybrid airfoil geometries can be computed.The designed hybrid airfoil consists of full-scale leading edges and redesigned aft-section.The hybrid airfoil can be tested under full-scale conditions to produce full-scale ice accretion in the exiting icing tunnels which are too small to perform ice accretion testing of full-scale airfoils.Moreover,the ice shapes formed on the full-scale and hybrid airfoils are compared at various attack angles.The results demonstrate that ice shapes between hybrid and full-scale airfoils match well and the developed method is effective.