We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy spl...We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).展开更多
In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the ...In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the mechanism is still under debate.Here,we report a detailed investigation of the superconducting properties near the QCP(x≈0.7) by utilizing scanning tunneling microscopy and spectroscopy.The temperature-dependent superconducting gap and magnetic vortex state were obtained and analyzed in the framework of the Bardeen-Cooper-Schrieffer model.The ideal isotropic s-wave superconducting gap excludes the long-speculated nematic fluctuations while preferring strong electron-phonon coupling as the mechanism for T_(C) enhancement near the QCP.The lower than expected gap ratio of Δ/(k_(B) T_(C)) is rooted in the fact that Ba_(1-x)Sr_(x)Ni_(2)As_(2) falls into the dirty limit with a serious pair breaking effect similar to the parent compound.展开更多
The stability of superconductivity in superconductors is widely recognized to be determined by various factors,including charge,spin,orbit,lattice,and other related degrees of freedom.Here,we report our findings on th...The stability of superconductivity in superconductors is widely recognized to be determined by various factors,including charge,spin,orbit,lattice,and other related degrees of freedom.Here,we report our findings on the pressure-induced coevolution of superconductivity and Hall coefficient in KCa_(2)Fe_(4)As_(24F_(2),an iron-based superconductor possessing a hybrid crystal structure combining KFe_(2)As_(2) and CaFeAsF.Our investigation,involving high-pressure resistance,Hall effect and x-ray diffraction(XRD) measurements,allows us to observe the connection of the superconductivity and Hall coefficient with the anisotropic lattice shrinkage.We find that its ambient-pressure tetragonal(T) phase presents a collapse starting at around 18 GPa,where the sign of the Hall coefficient(R_(H)) changes from positive to negative.Upon further compression,both superconducting transition temperature(T_(c)) and R_(H) exhibit a monotonous decrease.At around 41 GPa,the superconductivity is completely suppressed(T_(c)=0),where the parameter a begins to decline again and the Hall coefficient remains nearly unchanged.Our experiment results clearly demonstrate that the pressure-induced anisotropic lattice collapse plays a crucial role in tuning the interplay among multiple degrees of freedom in the superconducting system and,correspondingly,the stability of the superconductivity.展开更多
We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of th...We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11888101 and U1832202)the Chinese Academy of Sciences (Grant Nos.QYZDB-SSWSLH043,XDB28000000,and XDB33000000)+1 种基金the K.C.Wong Education Foundation (Grant No.GJTD-2018-01)the Informatization Plan of Chinese Academy of Sciences (Grant No.CAS-WX2021SF-0102)。
文摘We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403203, 2022YFA1403400, and 2021YFA1400400)the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802)+2 种基金the National Natural Science Foundation of China (Grant Nos. 12074002, 12104004, 12204008, and 12374133)the Chinese Academy of Sciences (Grant Nos. XDB33000000 and GJTD-2020-01)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01)。
文摘In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the mechanism is still under debate.Here,we report a detailed investigation of the superconducting properties near the QCP(x≈0.7) by utilizing scanning tunneling microscopy and spectroscopy.The temperature-dependent superconducting gap and magnetic vortex state were obtained and analyzed in the framework of the Bardeen-Cooper-Schrieffer model.The ideal isotropic s-wave superconducting gap excludes the long-speculated nematic fluctuations while preferring strong electron-phonon coupling as the mechanism for T_(C) enhancement near the QCP.The lower than expected gap ratio of Δ/(k_(B) T_(C)) is rooted in the fact that Ba_(1-x)Sr_(x)Ni_(2)As_(2) falls into the dirty limit with a serious pair breaking effect similar to the parent compound.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403900,2021YFA1401800,2018YFA0704201,and 2023YFA1406103)the National Natural Science Foundation of China(Grant Nos.U2032214,12122414,12104487,and 12004419)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)。
文摘The stability of superconductivity in superconductors is widely recognized to be determined by various factors,including charge,spin,orbit,lattice,and other related degrees of freedom.Here,we report our findings on the pressure-induced coevolution of superconductivity and Hall coefficient in KCa_(2)Fe_(4)As_(24F_(2),an iron-based superconductor possessing a hybrid crystal structure combining KFe_(2)As_(2) and CaFeAsF.Our investigation,involving high-pressure resistance,Hall effect and x-ray diffraction(XRD) measurements,allows us to observe the connection of the superconductivity and Hall coefficient with the anisotropic lattice shrinkage.We find that its ambient-pressure tetragonal(T) phase presents a collapse starting at around 18 GPa,where the sign of the Hall coefficient(R_(H)) changes from positive to negative.Upon further compression,both superconducting transition temperature(T_(c)) and R_(H) exhibit a monotonous decrease.At around 41 GPa,the superconductivity is completely suppressed(T_(c)=0),where the parameter a begins to decline again and the Hall coefficient remains nearly unchanged.Our experiment results clearly demonstrate that the pressure-induced anisotropic lattice collapse plays a crucial role in tuning the interplay among multiple degrees of freedom in the superconducting system and,correspondingly,the stability of the superconductivity.
基金supported by the National Natural Science Foundation of China(Grant Nos.11774303 and 11574373)the National Key Research and Development Program of China(Grant Nos.2022YFA1403402,2021YFA1400401,and 2020YFA0406003)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33000000 and GJTD-2020-01)financial support from the Joint Fund of Yunnan Provincial Science and Technology Department(Grant No.2019FY003008)。
文摘We report on soft c-axis point-contact Andreev reflection(PCAR)spectroscopy combining with resistivity measurements on BaFe_(2)(As_(0.7)P_(0.3))_(2),to elucidate the superconducting gap structure in the vicinity of the quantum critical point.A double peak at the gap edge plus a dip feature at zero-bias has been observed on the PCAR spectra,indicative of the presence of a nodeless gap in BaFe_(2)(As_(0.7)P_(0.3))_(2).Detailed analysis within a sophisticated theoretical model reveals an anisotropic gap with deep gap minima.The PCARs also feature additional structures related to the electron-bosonic coupling mode.Using the extracted superconducting energy gap value,a characteristic bosonic energy Ω_(b) and its temperature dependence are obtained,comparable with the spin-resonance energy observed in neutron scattering experiment.These results indicate a magnetism-driven quantum critical point in the BaFe_(2)(As_(1-x)P_(x))_(2) system.