对采用(/%):45CaF_2,10CaO,40Al_2O_3,5MgO渣系重熔的2.3 t GCr15轴承钢电渣锭轧成的φ26 mm钢材进行了试验和分析。结果表明,电渣重熔后,电渣锭小头Al、Si烧损及增氧较大头更为严重,母材、小头、大头的Si,Ah和O含量(/%)分别为0.24,0.16...对采用(/%):45CaF_2,10CaO,40Al_2O_3,5MgO渣系重熔的2.3 t GCr15轴承钢电渣锭轧成的φ26 mm钢材进行了试验和分析。结果表明,电渣重熔后,电渣锭小头Al、Si烧损及增氧较大头更为严重,母材、小头、大头的Si,Ah和O含量(/%)分别为0.24,0.16,0.21;0.025,0.011,0.017和0.001 0,0.003 0,0.002 0。钢中夹杂物主要以Al_2O_3,Mg-Al-O,Ca-Al-O为主,并含有少量FiN以及以Mg-Al-O为核心,以TiN为外围的复合夹杂物;小头夹杂物总量为16.49个/mm^2,大头夹杂物总量为14.96个/mm^2,电渣锭小头以单一Al_2O_3夹杂物为主,大头以Mg-AlO,Ca-Al-O夹杂物为主,主要原因是大头Al含量较高,对渣中MgO,CaO的还原程度较高。展开更多
Based on the system of electric power supply for flexible manufacturing systems (FMS), a study has been carried out on the intelligent safety examination, monitoring and maintenance of its running environment. On the ...Based on the system of electric power supply for flexible manufacturing systems (FMS), a study has been carried out on the intelligent safety examination, monitoring and maintenance of its running environment. On the basis of the specific feature of the power supply network of an FMS, real time monitoring system of the power supply network and the fault diagnostic expert system for the power equipment have been designed. This system can diagnose not only definite fault phenomena, but also fuzzy, uncertain fault phenomena as well. Fault diagnostic knowledge base for the power equipment has been founded hierarchy architecture model and the method of fault tree analysis. Feasibility of this system has been proved by computer simulation.展开更多
文摘Based on the system of electric power supply for flexible manufacturing systems (FMS), a study has been carried out on the intelligent safety examination, monitoring and maintenance of its running environment. On the basis of the specific feature of the power supply network of an FMS, real time monitoring system of the power supply network and the fault diagnostic expert system for the power equipment have been designed. This system can diagnose not only definite fault phenomena, but also fuzzy, uncertain fault phenomena as well. Fault diagnostic knowledge base for the power equipment has been founded hierarchy architecture model and the method of fault tree analysis. Feasibility of this system has been proved by computer simulation.