针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉...针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉米育种语料表达特征,采用对实体边界、关系类别和实体位置信息同步标注的策略;其次,构建了嵌入词汇信息的BERT-CRF模型进行训练和预测,自建玉米育种知识词典,通过在BERT中嵌入词汇信息,融合字符特征和词汇特征,增强模型的语义能力,利用CRF模型输出全局最优标签序列,设计了实体关系三元组匹配算法(Entity and relation triple matching algorithm,ERTM),将标签进行匹配和映射来获取三元组;最后,为验证该方法的有效性,在玉米育种数据集上进行实验,结果表明,本文模型精确率、召回率和F1值分别为91.84%、95.84%、93.80%,与现有模型相比性能均有提升。说明该方法能够有效抽取玉米育种领域知识,为构建玉米育种知识图谱及其它下游任务提供数据基础。展开更多
文摘针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉米育种语料表达特征,采用对实体边界、关系类别和实体位置信息同步标注的策略;其次,构建了嵌入词汇信息的BERT-CRF模型进行训练和预测,自建玉米育种知识词典,通过在BERT中嵌入词汇信息,融合字符特征和词汇特征,增强模型的语义能力,利用CRF模型输出全局最优标签序列,设计了实体关系三元组匹配算法(Entity and relation triple matching algorithm,ERTM),将标签进行匹配和映射来获取三元组;最后,为验证该方法的有效性,在玉米育种数据集上进行实验,结果表明,本文模型精确率、召回率和F1值分别为91.84%、95.84%、93.80%,与现有模型相比性能均有提升。说明该方法能够有效抽取玉米育种领域知识,为构建玉米育种知识图谱及其它下游任务提供数据基础。