无人驾驶技术的关键是决策层根据感知环节输入信息做出准确指令。强化学习和模仿学习比传统规则更适用于复杂场景。但以行为克隆为代表的模仿学习存在复合误差问题,使用优先经验回放算法对行为克隆进行改进,提升模型对演示数据集的拟合...无人驾驶技术的关键是决策层根据感知环节输入信息做出准确指令。强化学习和模仿学习比传统规则更适用于复杂场景。但以行为克隆为代表的模仿学习存在复合误差问题,使用优先经验回放算法对行为克隆进行改进,提升模型对演示数据集的拟合能力;原DDPG(deep deterministic policy gradient)算法存在探索效率低下问题,使用经验池分离以及随机网络蒸馏技术(random network distillation,RND)对DDPG算法进行改进,提升DDPG算法训练效率。使用改进后的算法进行联合训练,减少DDPG训练前期的无用探索。通过TORCS(the open racing car simulator)仿真平台验证,实验结果表明该方法在相同的训练次数内,能够探索出更稳定的道路保持、速度保持和避障能力。展开更多
为解决传统JPS(Jump Point Search)算法的拐点多和路径次优等问题,提出一种改进的跳点搜索算法。首先,根据地图可行率,对障碍物进行适应性膨胀,以保障安全距离;其次,结合方向性因素对启发函数进行调整,显著提高了路径搜索的目的性;最后...为解决传统JPS(Jump Point Search)算法的拐点多和路径次优等问题,提出一种改进的跳点搜索算法。首先,根据地图可行率,对障碍物进行适应性膨胀,以保障安全距离;其次,结合方向性因素对启发函数进行调整,显著提高了路径搜索的目的性;最后,提出了一种能剔除冗余节点的关键点提取策略,优化了初始规划后的路径,在保证路径最短的同时,显著减少了拓展节点和拐角。实验结果表明,与传统的JPS算法相比,所提算法能缩短路径长度并减少拐角数量,同时拓展节点数量平均减少19%,搜索速度平均提升21.8%。展开更多
针对无人车在复杂环境中进行全局路径规划时存在的盲目搜索、节点冗余、路径不光滑及不安全等问题,提出一种基于快速扩展随机树(RRT,rapidly-exploring random tree)的综合改进路径规划算法;首先引入目标动态概率采样策略和人工势场引...针对无人车在复杂环境中进行全局路径规划时存在的盲目搜索、节点冗余、路径不光滑及不安全等问题,提出一种基于快速扩展随机树(RRT,rapidly-exploring random tree)的综合改进路径规划算法;首先引入目标动态概率采样策略和人工势场引导随机树扩展机制;其次根据汽车运动学模型,对规划的路径进行转角约束和碰撞检测,保证路径的安全性;然后引入Reeds-Sheep曲线用于直接与目标位姿进行连接,避免多余的位姿调整;最后对路径进行剪枝和平滑处理,得到一条更短更光滑的路径;在实验部分,针对不同仿真环境,以规划时间、路径长度和节点数目作为评价指标,对比了RRT算法、RRT*算法和文章算法的路径规划效果;实验结果显示,文章算法相比于RRT算法和RRT*算法,节点数目分别减少了58.94%和85.22%,规划时间分别缩短了61.20%和79.23%,且路径长度相比于RRT算法缩短了17.26%,并和RRT*算法规划的最优路径长度相近。展开更多
文摘无人驾驶技术的关键是决策层根据感知环节输入信息做出准确指令。强化学习和模仿学习比传统规则更适用于复杂场景。但以行为克隆为代表的模仿学习存在复合误差问题,使用优先经验回放算法对行为克隆进行改进,提升模型对演示数据集的拟合能力;原DDPG(deep deterministic policy gradient)算法存在探索效率低下问题,使用经验池分离以及随机网络蒸馏技术(random network distillation,RND)对DDPG算法进行改进,提升DDPG算法训练效率。使用改进后的算法进行联合训练,减少DDPG训练前期的无用探索。通过TORCS(the open racing car simulator)仿真平台验证,实验结果表明该方法在相同的训练次数内,能够探索出更稳定的道路保持、速度保持和避障能力。
文摘为解决传统JPS(Jump Point Search)算法的拐点多和路径次优等问题,提出一种改进的跳点搜索算法。首先,根据地图可行率,对障碍物进行适应性膨胀,以保障安全距离;其次,结合方向性因素对启发函数进行调整,显著提高了路径搜索的目的性;最后,提出了一种能剔除冗余节点的关键点提取策略,优化了初始规划后的路径,在保证路径最短的同时,显著减少了拓展节点和拐角。实验结果表明,与传统的JPS算法相比,所提算法能缩短路径长度并减少拐角数量,同时拓展节点数量平均减少19%,搜索速度平均提升21.8%。
文摘针对无人车在复杂环境中进行全局路径规划时存在的盲目搜索、节点冗余、路径不光滑及不安全等问题,提出一种基于快速扩展随机树(RRT,rapidly-exploring random tree)的综合改进路径规划算法;首先引入目标动态概率采样策略和人工势场引导随机树扩展机制;其次根据汽车运动学模型,对规划的路径进行转角约束和碰撞检测,保证路径的安全性;然后引入Reeds-Sheep曲线用于直接与目标位姿进行连接,避免多余的位姿调整;最后对路径进行剪枝和平滑处理,得到一条更短更光滑的路径;在实验部分,针对不同仿真环境,以规划时间、路径长度和节点数目作为评价指标,对比了RRT算法、RRT*算法和文章算法的路径规划效果;实验结果显示,文章算法相比于RRT算法和RRT*算法,节点数目分别减少了58.94%和85.22%,规划时间分别缩短了61.20%和79.23%,且路径长度相比于RRT算法缩短了17.26%,并和RRT*算法规划的最优路径长度相近。