The low-temperature plasma (LTP) generated by dielectric barrier discharge (DBD) was used to sterilize the E.coli endotoxin, which is usually difficult to kill by traditional methods. Three different concentration...The low-temperature plasma (LTP) generated by dielectric barrier discharge (DBD) was used to sterilize the E.coli endotoxin, which is usually difficult to kill by traditional methods. Three different concentrations of bacterial endotoxin (1 EU/mL, 0.5 EU/mL and 0.25 EU/mL) were treated by LTP for different time (20 s, 40 s and 60 s). Tachypleus amebocyte lysate (TAL) method was employed to detect the concentration variation of bacterial endotoxin before and af- ter the plasma treatment, and endotoxic shock mice model was used to evaluate the inactivation effects of LTP on endotoxin for further study. Experimental results demonstrated that, DBD plasma can inactivate the bacterial endotoxin quickly and effectively, and when the LTP treatment time was increased, the concentrations of bacterial endotoxin decreased gradually (after 60 s plasma treatment, its inactivation effect was beyond the Chinese pharmacopoeia standard), and the average survival time of mice gradually extended. The possible inactivation mechanisms are proposed to be related to reactive oxygen species (ROSs).展开更多
In this paper, a one-dimensional discharge model is employed to study multi-pulse phenomena in Ar dielectric barrier discharge (DBD) under atmospheric pressure. The finiteelement method is employed to solve the mode...In this paper, a one-dimensional discharge model is employed to study multi-pulse phenomena in Ar dielectric barrier discharge (DBD) under atmospheric pressure. The finiteelement method is employed to solve the model. The influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of multi discharge pulses are investigated and discussed. The simulation results show that, both the intensity of discharge current and the number of discharge pulses increase with the amplitude of applied voltage, and narrower gas gap is more favorable for the formation of multi pulses. It is revealed that Ar DBDs behave in glow discharge mode when the applied voltage and gas gap distance vary from 2 kV to 6 kV and from 1 mm to 3 mm, respectively. With the frequency decreasing from 250 Hz to 125 Hz, the intensity of discharge current weakens and the number of discharge pulses increases, and the discharges behave in the typical Townsend discharge mode.展开更多
基金supported in part by China Foundation for the Author of National Excellent Doctoral Dissertation(No.200338)Shaanxi Province Science and Technology Program(No.2010K16-04)+1 种基金the Fundamental Research Funds for the Central Universities (Nos.2009xjtujc18,xjj20100160)Guanghua Foundation for Medicine Innovation Research of China(No.0203419)
文摘The low-temperature plasma (LTP) generated by dielectric barrier discharge (DBD) was used to sterilize the E.coli endotoxin, which is usually difficult to kill by traditional methods. Three different concentrations of bacterial endotoxin (1 EU/mL, 0.5 EU/mL and 0.25 EU/mL) were treated by LTP for different time (20 s, 40 s and 60 s). Tachypleus amebocyte lysate (TAL) method was employed to detect the concentration variation of bacterial endotoxin before and af- ter the plasma treatment, and endotoxic shock mice model was used to evaluate the inactivation effects of LTP on endotoxin for further study. Experimental results demonstrated that, DBD plasma can inactivate the bacterial endotoxin quickly and effectively, and when the LTP treatment time was increased, the concentrations of bacterial endotoxin decreased gradually (after 60 s plasma treatment, its inactivation effect was beyond the Chinese pharmacopoeia standard), and the average survival time of mice gradually extended. The possible inactivation mechanisms are proposed to be related to reactive oxygen species (ROSs).
基金supported in part by China Foundation for the Author of National Excellent Doctoral Dissertation(No.200338)Fundamental Research Funds for the Central Universities of China(No.xjj20100160)
文摘In this paper, a one-dimensional discharge model is employed to study multi-pulse phenomena in Ar dielectric barrier discharge (DBD) under atmospheric pressure. The finiteelement method is employed to solve the model. The influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of multi discharge pulses are investigated and discussed. The simulation results show that, both the intensity of discharge current and the number of discharge pulses increase with the amplitude of applied voltage, and narrower gas gap is more favorable for the formation of multi pulses. It is revealed that Ar DBDs behave in glow discharge mode when the applied voltage and gas gap distance vary from 2 kV to 6 kV and from 1 mm to 3 mm, respectively. With the frequency decreasing from 250 Hz to 125 Hz, the intensity of discharge current weakens and the number of discharge pulses increases, and the discharges behave in the typical Townsend discharge mode.