A miniaturized H 2/air self-breathing proton exchange membrane fuel cell(μPEMFC) was designed and fabricated with 1 cm 2 active area. All the basic parts of a conventional H 2/air PEMFC were incorporated in a smaller...A miniaturized H 2/air self-breathing proton exchange membrane fuel cell(μPEMFC) was designed and fabricated with 1 cm 2 active area. All the basic parts of a conventional H 2/air PEMFC were incorporated in a smaller and simpler package. The electrodes of the μPEMFC were constructed on silicon wafer substrates by means of standard micro electromechanical systems (MEMS) techniques. The obtained results show that the peak power density of a single cell has exceeded 110 mW/cm 2 when it was operated in ambient atmosphere at 20 ℃. Furthermore, the cells can yield over 400 W/L specific power density.展开更多
文摘A miniaturized H 2/air self-breathing proton exchange membrane fuel cell(μPEMFC) was designed and fabricated with 1 cm 2 active area. All the basic parts of a conventional H 2/air PEMFC were incorporated in a smaller and simpler package. The electrodes of the μPEMFC were constructed on silicon wafer substrates by means of standard micro electromechanical systems (MEMS) techniques. The obtained results show that the peak power density of a single cell has exceeded 110 mW/cm 2 when it was operated in ambient atmosphere at 20 ℃. Furthermore, the cells can yield over 400 W/L specific power density.