The densest packing of tetrahedra is still an unsolved problem. Numerical simulations of random close packing of tetrahedra are carried out with a sphere assembly model and improved relaxation algorithm. The packing d...The densest packing of tetrahedra is still an unsolved problem. Numerical simulations of random close packing of tetrahedra are carried out with a sphere assembly model and improved relaxation algorithm. The packing density and average contact number obtained for random close packing of regular tetrahedra is 0.6817 and 7.21 respectively, while the values of spheres are 0.6435 and 5.95. The simulation demonstrates that tetrahedra can be randomly packed denser than spheres. Random close packings of tetrahedra with a range of height are simulated as well. We find that the regular tetrahedron might be the optimal shape which gives the highest packing density of tetrahedra.展开更多
Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative mo...Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative motion of component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2I) and 3D eases are simulated. With the simulations, we find that the packing density increases while the particle sphericity decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing density in the deformation respectively. In each deforming step, packings starting from a random configuration and from the final packing of last deforming step are both simulated. The packing density in the latter case is larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be applied to other particle shapes as well.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10772005.
文摘The densest packing of tetrahedra is still an unsolved problem. Numerical simulations of random close packing of tetrahedra are carried out with a sphere assembly model and improved relaxation algorithm. The packing density and average contact number obtained for random close packing of regular tetrahedra is 0.6817 and 7.21 respectively, while the values of spheres are 0.6435 and 5.95. The simulation demonstrates that tetrahedra can be randomly packed denser than spheres. Random close packings of tetrahedra with a range of height are simulated as well. We find that the regular tetrahedron might be the optimal shape which gives the highest packing density of tetrahedra.
基金Supported by the National Natural Science Foundation of China under Grant No 10772005.
文摘Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative motion of component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2I) and 3D eases are simulated. With the simulations, we find that the packing density increases while the particle sphericity decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing density in the deformation respectively. In each deforming step, packings starting from a random configuration and from the final packing of last deforming step are both simulated. The packing density in the latter case is larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be applied to other particle shapes as well.