The dynamic control of single-photon scattering in a pair of one-dimensional waveguides mediated by a time-modulated atom-cavity system is investigated.Two cases,where the waveguides are coupled symmetrically or asymm...The dynamic control of single-photon scattering in a pair of one-dimensional waveguides mediated by a time-modulated atom-cavity system is investigated.Two cases,where the waveguides are coupled symmetrically or asymmetrically to the atom-cavity system,are discussed in detail.The results show that such time-modulated atom-cavity configuration can behave as a dynamical tunable directional single-photon router.The photons with different frequencies can dynamically be routed from the incident waveguide into any ports of the other with a 100%probability via adjusting the modulated amplitude or phases of the time-modulated atom-cavity coupling strengths,associate with the help of the asymmetrical waveguide-cavity couplings.Furthermore,the influence of dissipation on the routing capability is investigated.It is shown that the present single-photon router is robust against the dissipative process of the system,especially the atomic dissipation.These results are expected to be applicable in quantum information processing and design quantum devices with dynamical modulation.展开更多
We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twol...We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twolevel atoms(TLAs).When the atoms do not interact directly,the frequency and intensity restrictions of collective UCPB can be specified,and a giant NUCPB exists due to the splitting of optimal atom–cavity coupling strength in proper parameter regime.However,if a weak atom–atom interaction which provides a new and feeble quantum interference pathway to UCPB is taken into account,two restrictions of UCPB are combined complexly,which are rigorous to be matched simultaneously.Due to the push-and-pull effect induced by weak dipole–dipole interaction,the UCPB regime is compressed more or less.NUCPB is improved as a higher contrast is present when the two complex UCPB restrictions are matched,while it is suppressed when the restrictions are mismatched.In general,whether NUCPB is suppressed or promoted depends on its working parameters.Our findings show a prospective access to produce giant quantum nonreciprocity by a couple of weakly interacting atoms.展开更多
The phase-modulated quadrature squeezing in the system that composed of two coupled cavities interacting with a two-level atom is investigated.The variances of the amplitude and phase quadrature of the output field ar...The phase-modulated quadrature squeezing in the system that composed of two coupled cavities interacting with a two-level atom is investigated.The variances of the amplitude and phase quadrature of the output field are calculated.It turns out that the squeezing behaviors of the output field can be obviously modified due to the phase difference of the coupling strengths between the atom and the two cavities.The squeezing in one quadrature(i.e.,phase quadrature)can be transferred into another(i.e.,amplitude quadrature),or the quadrature squeezing located at the low-frequency region can be transferred into the high-frequency region by modulating the relative phase of the coupling strengths.Furthermore,the effects of the decay mismatch between the two cavities and the coupling mismatch between the atom and the cavities on the quadrature squeezing have been discussed.The results show that both the decay mismatch and the coupling mismatch play a positive role in generating better quadrature squeezing.展开更多
基金Project supported by China Postdoctoral Science Foundation (Grant No.2023M732028)the Fund from Zhejiang Province Key Laboratory of Quantum Technology and Device (Grant No.20230201)+3 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China (Grant No.GK199900299012-015)the Natural Science Foundation of Zhejiang Province,China (Grant No.LY21A040003)the National Natural Science Foundation of China (Grant Nos.12164022,12174288,and 12274326)the Natural Science Foundation of Jiangxi Province,China (Grant No.20232BAB201044)。
文摘The dynamic control of single-photon scattering in a pair of one-dimensional waveguides mediated by a time-modulated atom-cavity system is investigated.Two cases,where the waveguides are coupled symmetrically or asymmetrically to the atom-cavity system,are discussed in detail.The results show that such time-modulated atom-cavity configuration can behave as a dynamical tunable directional single-photon router.The photons with different frequencies can dynamically be routed from the incident waveguide into any ports of the other with a 100%probability via adjusting the modulated amplitude or phases of the time-modulated atom-cavity coupling strengths,associate with the help of the asymmetrical waveguide-cavity couplings.Furthermore,the influence of dissipation on the routing capability is investigated.It is shown that the present single-photon router is robust against the dissipative process of the system,especially the atomic dissipation.These results are expected to be applicable in quantum information processing and design quantum devices with dynamical modulation.
基金the National Natural Science Foundation of China(Grants Nos.12164022,11864018,and 12174288)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.GK199900299012-015)。
文摘We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twolevel atoms(TLAs).When the atoms do not interact directly,the frequency and intensity restrictions of collective UCPB can be specified,and a giant NUCPB exists due to the splitting of optimal atom–cavity coupling strength in proper parameter regime.However,if a weak atom–atom interaction which provides a new and feeble quantum interference pathway to UCPB is taken into account,two restrictions of UCPB are combined complexly,which are rigorous to be matched simultaneously.Due to the push-and-pull effect induced by weak dipole–dipole interaction,the UCPB regime is compressed more or less.NUCPB is improved as a higher contrast is present when the two complex UCPB restrictions are matched,while it is suppressed when the restrictions are mismatched.In general,whether NUCPB is suppressed or promoted depends on its working parameters.Our findings show a prospective access to produce giant quantum nonreciprocity by a couple of weakly interacting atoms.
基金Project supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.GK199900299012-015)the National Natural Science Foundation of China(Grant Nos.11574229,11874287,and 11574068)and the Science Fund from the Shanghai Science and Technology Committee,China(Grant No.18JC1410900).
文摘The phase-modulated quadrature squeezing in the system that composed of two coupled cavities interacting with a two-level atom is investigated.The variances of the amplitude and phase quadrature of the output field are calculated.It turns out that the squeezing behaviors of the output field can be obviously modified due to the phase difference of the coupling strengths between the atom and the two cavities.The squeezing in one quadrature(i.e.,phase quadrature)can be transferred into another(i.e.,amplitude quadrature),or the quadrature squeezing located at the low-frequency region can be transferred into the high-frequency region by modulating the relative phase of the coupling strengths.Furthermore,the effects of the decay mismatch between the two cavities and the coupling mismatch between the atom and the cavities on the quadrature squeezing have been discussed.The results show that both the decay mismatch and the coupling mismatch play a positive role in generating better quadrature squeezing.