Alloy nanostructures supporting localized surface plasmon resonances has been widely used as efficient photocatalysts,but the microscopic mechanism of alloy compositions enhancing the catalytic efficiency is still unc...Alloy nanostructures supporting localized surface plasmon resonances has been widely used as efficient photocatalysts,but the microscopic mechanism of alloy compositions enhancing the catalytic efficiency is still unclear.By using time-dependent density functional theory(TDDFT),we analyze the real-time reaction processes of plasmon-mediated H_(2) splitting on linear Ag-Au alloy chains when exposed to femtosecond laser pulses.It is found that H_(2) splitting rate depends on the position and proportion of Au atoms in alloy chains,which indicates that specially designed Ag-Au alloy is more likely to induce the reaction than pure Ag chain.Especially,more electrons directly transfer from the alloy chain to the anti-bonding state of H_(2),thereby accelerating the H_(2) splitting reaction.These results establish a theoretical foundation for comprehending the microscopic mechanism of plasmon-induced chemical reaction on the alloy nanostructures.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2020YFA0211300 and 2021YFA1201500)the National Natural Science Foundation of China(Grant Nos.U22A6005,92150110,12074237,and 12304426)+2 种基金the Natural Science Foundation of Shaanxi Province,China(Grant No.2024JC-JCQN-07)the Fundamental Science Foundation of Shaanxi Province,China(Grant No.22JSZ010)the Fundamental Research Funds for Central Universities(Grant Nos.GK202201012 and GK202308001).
文摘Alloy nanostructures supporting localized surface plasmon resonances has been widely used as efficient photocatalysts,but the microscopic mechanism of alloy compositions enhancing the catalytic efficiency is still unclear.By using time-dependent density functional theory(TDDFT),we analyze the real-time reaction processes of plasmon-mediated H_(2) splitting on linear Ag-Au alloy chains when exposed to femtosecond laser pulses.It is found that H_(2) splitting rate depends on the position and proportion of Au atoms in alloy chains,which indicates that specially designed Ag-Au alloy is more likely to induce the reaction than pure Ag chain.Especially,more electrons directly transfer from the alloy chain to the anti-bonding state of H_(2),thereby accelerating the H_(2) splitting reaction.These results establish a theoretical foundation for comprehending the microscopic mechanism of plasmon-induced chemical reaction on the alloy nanostructures.