采用等温热压缩测试和TEM分析研究铝锂合金的流变行为与组织演化规律。结果表明:合金的热塑性变形过程受热激活控制,当变形温度低于410℃时,流变曲线具有明显的峰值应力,曲线由加工硬化、动态软化和稳定阶段3个阶段组成;当变形温度高于...采用等温热压缩测试和TEM分析研究铝锂合金的流变行为与组织演化规律。结果表明:合金的热塑性变形过程受热激活控制,当变形温度低于410℃时,流变曲线具有明显的峰值应力,曲线由加工硬化、动态软化和稳定阶段3个阶段组成;当变形温度高于410℃后,峰值应力不明显。随应变量的增加,合金组织演化规律为产生大量无规则缠结位错→"多边化"形成"位错墙"→分割原始晶粒成若干亚晶→亚晶合并长大并同时经受变形→重复上述过程。应变量的增加导致大量空位产生,刃型位错更易攀移、重组和对消,晶内形成亚晶组织。求解得到合金的材料常数如下:结构因子A为2.787×1016;变形激活能Q为217.397 k J/mol;应力指数n为6.11656;应力水平参数α为0.012568 mm2/N。应变速率和温度对合金流变应力的影响可以用包含Arrhenius等式的Z参数表示。展开更多
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
文摘采用等温热压缩测试和TEM分析研究铝锂合金的流变行为与组织演化规律。结果表明:合金的热塑性变形过程受热激活控制,当变形温度低于410℃时,流变曲线具有明显的峰值应力,曲线由加工硬化、动态软化和稳定阶段3个阶段组成;当变形温度高于410℃后,峰值应力不明显。随应变量的增加,合金组织演化规律为产生大量无规则缠结位错→"多边化"形成"位错墙"→分割原始晶粒成若干亚晶→亚晶合并长大并同时经受变形→重复上述过程。应变量的增加导致大量空位产生,刃型位错更易攀移、重组和对消,晶内形成亚晶组织。求解得到合金的材料常数如下:结构因子A为2.787×1016;变形激活能Q为217.397 k J/mol;应力指数n为6.11656;应力水平参数α为0.012568 mm2/N。应变速率和温度对合金流变应力的影响可以用包含Arrhenius等式的Z参数表示。
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.