The purpose was to clarify the relationship between the main process parameters of micro-plasma cladding and the comprehensive quality(geometry,microstructure and wear rate of cladding track).Self-fluxing ferrous allo...The purpose was to clarify the relationship between the main process parameters of micro-plasma cladding and the comprehensive quality(geometry,microstructure and wear rate of cladding track).Self-fluxing ferrous alloy powders were fabricated on Q235 substrate.Based on the uniform design,the distribution of the experimental samples was designed reasonably in the sample space,which greatly improved efficiency and reduced costs.After a series of microstructural characterization,there was no difference in the phase composition of all samples,but the average grain size had a significant difference,which resulted in the change of wear rate.And the relationship among micro-hardness,average grain size and wear rate of the track had also been investigated.Subsequently,an optimization model was established and the optimal process parameters were obtained with excellent wear rate under the geometric constraints.The correctness of optimization model was verified by experiments.展开更多
High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3...High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3)-coated PF(Y_(2)O_(3)/PF)powder was firstly sprayed onto the substrate,forming a transition layer,and then the spherical Y_(2)O_(3) powder and Y_(2)O_(3)/PF powder were alternately deposited to form the composite alternating coating.Results show that the alternating coating is mainly composed of deposited Y_(2)O_(3)/PF powder.The bonding strength between coating and substrate is as high as 26.48 MPa with the single-test maximum bonding strength of 28.10 MPa,and shear strength reaches 24.30 MPa.Additionally,the heat transfer effect caused by external Y_(2)O_(3) particles gradually softens and even melts PF,thus effectively avoiding the damage of high temperature to molecular structure and thereby promoting the crosslinking and curing effects of resin during the deposition process.In the meantime,the unmelted Y_(2)O_(3) powder results in the shot peening effect,which washes out and eliminates the powder particles with inferior deposition effect,ultimately improving the physical and chemical properties of the alternating coating.展开更多
基金Project (51210008) supported by National Natural Science Foundation of China
文摘The purpose was to clarify the relationship between the main process parameters of micro-plasma cladding and the comprehensive quality(geometry,microstructure and wear rate of cladding track).Self-fluxing ferrous alloy powders were fabricated on Q235 substrate.Based on the uniform design,the distribution of the experimental samples was designed reasonably in the sample space,which greatly improved efficiency and reduced costs.After a series of microstructural characterization,there was no difference in the phase composition of all samples,but the average grain size had a significant difference,which resulted in the change of wear rate.And the relationship among micro-hardness,average grain size and wear rate of the track had also been investigated.Subsequently,an optimization model was established and the optimal process parameters were obtained with excellent wear rate under the geometric constraints.The correctness of optimization model was verified by experiments.
基金National Natural Science Foundation of China(52130509,52275211,52075542)Supported by 145 Project+1 种基金Science and Technology New Star Project of Shaanxi Innovation Capability Support Program(2021KJXX-38)China Postdoctoral Science Foundation(2021M693883)。
文摘High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3)-coated PF(Y_(2)O_(3)/PF)powder was firstly sprayed onto the substrate,forming a transition layer,and then the spherical Y_(2)O_(3) powder and Y_(2)O_(3)/PF powder were alternately deposited to form the composite alternating coating.Results show that the alternating coating is mainly composed of deposited Y_(2)O_(3)/PF powder.The bonding strength between coating and substrate is as high as 26.48 MPa with the single-test maximum bonding strength of 28.10 MPa,and shear strength reaches 24.30 MPa.Additionally,the heat transfer effect caused by external Y_(2)O_(3) particles gradually softens and even melts PF,thus effectively avoiding the damage of high temperature to molecular structure and thereby promoting the crosslinking and curing effects of resin during the deposition process.In the meantime,the unmelted Y_(2)O_(3) powder results in the shot peening effect,which washes out and eliminates the powder particles with inferior deposition effect,ultimately improving the physical and chemical properties of the alternating coating.