A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on...A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.展开更多
以工业硅为原料,利用介质熔炼、定向凝固和电子束熔炼三种熔体处理技术对工业硅中的B、P和金属杂质进行了去除,制备出了99.9999%级多晶硅材料,其中,杂质B和P的含量分别低于0.20 ppmw(parts per million(weight),百万分之一质量),金属杂...以工业硅为原料,利用介质熔炼、定向凝固和电子束熔炼三种熔体处理技术对工业硅中的B、P和金属杂质进行了去除,制备出了99.9999%级多晶硅材料,其中,杂质B和P的含量分别低于0.20 ppmw(parts per million(weight),百万分之一质量),金属杂质总含量(TM)低于0.23 ppmw。研究发现,介质熔炼去除杂质B的过程中,熔体中发生氧化还原反应可以有效去除大部分的杂质Al和Ca;电子束熔炼过程中,利用饱和蒸气压原理可以有效去除挥发性杂质P、Al、Ca,同时降束诱导多晶硅定向凝固,可将其他金属杂质进一步去除。本研究通过各技术间的耦合除杂,减少了冶金法提纯多晶硅的工序,为连续化、规模化生产提供了技术支撑。展开更多
Al-LaB6 alloy was successfully prepared by aluminum melt reaction method. Microstmcture analysis of this alloy was carried out by field emission scanning electron microscopy (FESEM), Raman spectroscopy and transmiss...Al-LaB6 alloy was successfully prepared by aluminum melt reaction method. Microstmcture analysis of this alloy was carried out by field emission scanning electron microscopy (FESEM), Raman spectroscopy and transmission electron microscopy (TEM). It was found that cubic LaB6 particles were highly dispersed in aluminum matrix with a uniform edge length of about 4.5 μm. Grain refining potency of LaB6 on commercial pure aluminum was also investigated. It was shown that LaB6 could act as an effective and stable nucleation substrate for α-Al during solidification process, due to their crystallographic similarity. The coarse grains of commercial pure aluminum were obviously refined to small equiaxed ones by addition of 0.5% Al-5LaB6 alloy at 720 ℃.展开更多
基金Project(50625101) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject supported by Graduate Independent Innovation Foundation of Shandong University(GIIFSDU),ChinaProject(51071097) supported by the National Natural Science Foundation of China
文摘A series of Al-Ti-B master alloys were prepared by different preparation routes,and the TiB2 particles in the master alloys were extracted and analyzed.It is found that the forming process has significant influence on the three-dimensional morphology of TiB2 particles.Different preparation routes result in different reaction forms,which accounts for the morphology variation of TiB2 particles.When the Al-Ti-B master alloy is prepared using "halide salt" route,TiB2 particles exhibit hexagonal platelet morphology and are independent with each other.In addition,the reaction temperature almost does not have influence on the morphology of TiB2 particles.However,TiB2 particles exhibit different morphologies at different reaction temperatures when the master alloys are prepared with Al-3B and Ti sponge.When the master alloy is prepared at 850 ℃,a kind of TiB2 particle agglomeration forms with a size larger than 5 μm.The TiB2 particles change to layered stacking morphology even dendritic morphology with the reaction temperature reaching up to 1200 ℃.
文摘以工业硅为原料,利用介质熔炼、定向凝固和电子束熔炼三种熔体处理技术对工业硅中的B、P和金属杂质进行了去除,制备出了99.9999%级多晶硅材料,其中,杂质B和P的含量分别低于0.20 ppmw(parts per million(weight),百万分之一质量),金属杂质总含量(TM)低于0.23 ppmw。研究发现,介质熔炼去除杂质B的过程中,熔体中发生氧化还原反应可以有效去除大部分的杂质Al和Ca;电子束熔炼过程中,利用饱和蒸气压原理可以有效去除挥发性杂质P、Al、Ca,同时降束诱导多晶硅定向凝固,可将其他金属杂质进一步去除。本研究通过各技术间的耦合除杂,减少了冶金法提纯多晶硅的工序,为连续化、规模化生产提供了技术支撑。
基金supported by the National Natural Science Foundation of China (51071097,51001065)the support of the Graduate Independent Innovation Foundation of Shandong University (GIIFSDU)
文摘Al-LaB6 alloy was successfully prepared by aluminum melt reaction method. Microstmcture analysis of this alloy was carried out by field emission scanning electron microscopy (FESEM), Raman spectroscopy and transmission electron microscopy (TEM). It was found that cubic LaB6 particles were highly dispersed in aluminum matrix with a uniform edge length of about 4.5 μm. Grain refining potency of LaB6 on commercial pure aluminum was also investigated. It was shown that LaB6 could act as an effective and stable nucleation substrate for α-Al during solidification process, due to their crystallographic similarity. The coarse grains of commercial pure aluminum were obviously refined to small equiaxed ones by addition of 0.5% Al-5LaB6 alloy at 720 ℃.