To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models w...To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models with various configuration-elements were developed to investigate the magnetic field in cold crucible. Magnetic flux density (B) was measured and calculated under different configuration parameters. These parameters include the inner diameter (D2), the slit width (d), the thickness of crucible wall, the section shape of the slit and the shield ring. The results show that the magnetic flux density in z direction (Bz) both at the slit and at the midpoint of segment will increase with the decrease of D2 or with the increase of the width of the slit and the section area of wedge slit or removing the shield ring. In addition, there is a worst wall thickness that can induce the minimum Bz for a cold crucible with a certain outer diameter.展开更多
In order to optimize technological parameters and realize directional solidification,temperature fields of cold crucible continuous melting and directional solidifying Ti50Al(mole fraction,%) at different parameters...In order to optimize technological parameters and realize directional solidification,temperature fields of cold crucible continuous melting and directional solidifying Ti50Al(mole fraction,%) at different parameters were calculated.Continuous casting of the model is achieved by distinguishing the moving unit at different positions.The calculation results show that the feeding rod is entirely melted at 200 s,the melt of feeding rod has some superheat degree at 300 s under the conditions of 52 kW and 3.0 mm/min.Both the superheat degree and the molten zone of the feeding rod reduce,the solid-liquid interface becomes concave with increasing velocity from 1.2 mm/min to 6.0 mm/min when the power is 52 kW,and the outside layer of the rod cannot be melted at the velocity of 6.0 mm/min.Both superheat degree and the molten zone of the feeding rod increase,the solid-liquid interface descends and becomes concave with increasing power from 48 to 58 kW at velocity of 3.0 mm/min,and the rod cannot be melted entirely when the power is 48 kW.Cold crucible continuous melting and directional solidification of TiAl alloys will be achieved successfully when the pulling velocity and the power are matched appropriately.展开更多
Effect of isothermal holding treatment in the solidification process on the microstructure of Ti-6Al-4V alloy was studied by temperature controlled induced melting apparatus. The result shows that with isothermal hold...Effect of isothermal holding treatment in the solidification process on the microstructure of Ti-6Al-4V alloy was studied by temperature controlled induced melting apparatus. The result shows that with isothermal holding treatment above the β transus temperature during solidification, the colony structure consisting of parallel lamellae was obtained. While the isothermal holding treatment was set at 960 °C, a unique bi-modal microstructure consisting of coarse primary α and fine secondary lamellar α was obtained. The primary lamellar α tended to break into several pieces, globularize and present equiaxed morphology. The formation mechanism of the equiaxed α can be explained with the atom immigration, high density dislocations, combined action with the interface tension of formed α phase during the isothermal holding treatment. After the isothermal holding, the retained β matrix transformed into fine lamellar α, thus, bi-modal microstructure was acquired. Compared with the lamellar structure, the grain boundary α presented discontinuously and cannot be distinguished from the primary α lamellae easily. The size of colonies α was greatly decreased. The microstructure tended to be much more homogeneous in the whole section of the samples.展开更多
Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating ...Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.展开更多
基金Project (2011CB605504) supported by the National Basic Research Program of China
文摘To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models with various configuration-elements were developed to investigate the magnetic field in cold crucible. Magnetic flux density (B) was measured and calculated under different configuration parameters. These parameters include the inner diameter (D2), the slit width (d), the thickness of crucible wall, the section shape of the slit and the shield ring. The results show that the magnetic flux density in z direction (Bz) both at the slit and at the midpoint of segment will increase with the decrease of D2 or with the increase of the width of the slit and the section area of wedge slit or removing the shield ring. In addition, there is a worst wall thickness that can induce the minimum Bz for a cold crucible with a certain outer diameter.
基金Project(2011CB6055504) supported by the National Basic Research Program of China
文摘In order to optimize technological parameters and realize directional solidification,temperature fields of cold crucible continuous melting and directional solidifying Ti50Al(mole fraction,%) at different parameters were calculated.Continuous casting of the model is achieved by distinguishing the moving unit at different positions.The calculation results show that the feeding rod is entirely melted at 200 s,the melt of feeding rod has some superheat degree at 300 s under the conditions of 52 kW and 3.0 mm/min.Both the superheat degree and the molten zone of the feeding rod reduce,the solid-liquid interface becomes concave with increasing velocity from 1.2 mm/min to 6.0 mm/min when the power is 52 kW,and the outside layer of the rod cannot be melted at the velocity of 6.0 mm/min.Both superheat degree and the molten zone of the feeding rod increase,the solid-liquid interface descends and becomes concave with increasing power from 48 to 58 kW at velocity of 3.0 mm/min,and the rod cannot be melted entirely when the power is 48 kW.Cold crucible continuous melting and directional solidification of TiAl alloys will be achieved successfully when the pulling velocity and the power are matched appropriately.
基金Project(3102014JCQ01026)supported by the Fundamental Research Fund for the Central Universities,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘Effect of isothermal holding treatment in the solidification process on the microstructure of Ti-6Al-4V alloy was studied by temperature controlled induced melting apparatus. The result shows that with isothermal holding treatment above the β transus temperature during solidification, the colony structure consisting of parallel lamellae was obtained. While the isothermal holding treatment was set at 960 °C, a unique bi-modal microstructure consisting of coarse primary α and fine secondary lamellar α was obtained. The primary lamellar α tended to break into several pieces, globularize and present equiaxed morphology. The formation mechanism of the equiaxed α can be explained with the atom immigration, high density dislocations, combined action with the interface tension of formed α phase during the isothermal holding treatment. After the isothermal holding, the retained β matrix transformed into fine lamellar α, thus, bi-modal microstructure was acquired. Compared with the lamellar structure, the grain boundary α presented discontinuously and cannot be distinguished from the primary α lamellae easily. The size of colonies α was greatly decreased. The microstructure tended to be much more homogeneous in the whole section of the samples.
基金Project (2011CB605504) supported by the National Basic Research Program of China
文摘Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.