We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate...With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.展开更多
传统的云型识别主要是提取云的颜色、纹理和形状等特征,但这些特征中存在不相关和冗余特征,导致云型识别率降低。在最大相关最小冗余(max-relevance and min-redundancy,mRMR)特征选择方法的基础上,运用互信息标准化形式(Symmetrical Un...传统的云型识别主要是提取云的颜色、纹理和形状等特征,但这些特征中存在不相关和冗余特征,导致云型识别率降低。在最大相关最小冗余(max-relevance and min-redundancy,mRMR)特征选择方法的基础上,运用互信息标准化形式(Symmetrical Uncertainty,SU)克服互信息偏向于取值较多属性的固有缺点,提出了改进的mRMR特征选择方法,对云的综合特征集进行特征筛选,筛选出最优特征子集,运用支持向量机进行云型识别。试验结果表明该方法优于mRMR方法,使层云、积云、高积云、卷云和晴空5种天空类型的总正确率提高,特征选择前、后的总识别率分别为86.96%、89.04%,识别率提高了2%;对于云型识别研究,经过特征选择后可知纹理特征优于形状特征,基于形状的Zernike矩优于HU不变矩,基于纹理的灰度共生矩阵为最优特征提取方法。展开更多
One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement ap...One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
基金supported by the Beijing Academy of Quantum Information Sciencessupported by the National Natural Science Foundation of China(Grant No.92365206)+2 种基金the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.
文摘传统的云型识别主要是提取云的颜色、纹理和形状等特征,但这些特征中存在不相关和冗余特征,导致云型识别率降低。在最大相关最小冗余(max-relevance and min-redundancy,mRMR)特征选择方法的基础上,运用互信息标准化形式(Symmetrical Uncertainty,SU)克服互信息偏向于取值较多属性的固有缺点,提出了改进的mRMR特征选择方法,对云的综合特征集进行特征筛选,筛选出最优特征子集,运用支持向量机进行云型识别。试验结果表明该方法优于mRMR方法,使层云、积云、高积云、卷云和晴空5种天空类型的总正确率提高,特征选择前、后的总识别率分别为86.96%、89.04%,识别率提高了2%;对于云型识别研究,经过特征选择后可知纹理特征优于形状特征,基于形状的Zernike矩优于HU不变矩,基于纹理的灰度共生矩阵为最优特征提取方法。
基金the valuable discussions.Project supported by the National Natural Science Foundation of China(Grant Nos.92265207 and T2121001)Beijing Natural Science Foundation(Grant No.Z200009).
文摘One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.