Molecular-frame photoelectron momentum distributions(MF-PMDs) of an H_(2)^(+) molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by n...Molecular-frame photoelectron momentum distributions(MF-PMDs) of an H_(2)^(+) molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by numerically solving the two-dimensional time-dependent Schrodinger equation within the frozen-nuclei approximation. At small time delay, our simulations show that the electron vortex structure is sensitive to the time delay and relative phase between the counterrotating pulses when they are partially overlapped. By adjusting time delay and relative phase, we have the ability to manipulate the MF-PMDs and the appearance of spiral arms. We further show that the internuclear distance can affect the spiral vortices due to its different transition cross sections in the parallel and perpendicular geometries. The lowest-order perturbation theory is employed to interpret these phenomena qualitatively. It is concluded that the internuclear distancedependent transition cross sections and the confinement effect in diatomic molecules are responsible for the variation of vortex structures in the MF-PMDs.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province,China (Grant No.20220101016JC)the National Key Research and Development Program of China (Grant No.2022YFE0134200)+1 种基金the National Natural Science Foundation of China (Grant Nos.12174147,91850114,and 11774131)the Open Research Fund of State Key Laboratory of Transient Optics and Photonics。
文摘Molecular-frame photoelectron momentum distributions(MF-PMDs) of an H_(2)^(+) molecule ion in the presence of a pair of counter-rotating circularly polarized attosecond extreme ultraviolet laser pulses is studied by numerically solving the two-dimensional time-dependent Schrodinger equation within the frozen-nuclei approximation. At small time delay, our simulations show that the electron vortex structure is sensitive to the time delay and relative phase between the counterrotating pulses when they are partially overlapped. By adjusting time delay and relative phase, we have the ability to manipulate the MF-PMDs and the appearance of spiral arms. We further show that the internuclear distance can affect the spiral vortices due to its different transition cross sections in the parallel and perpendicular geometries. The lowest-order perturbation theory is employed to interpret these phenomena qualitatively. It is concluded that the internuclear distancedependent transition cross sections and the confinement effect in diatomic molecules are responsible for the variation of vortex structures in the MF-PMDs.