An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification p...An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.展开更多
ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologie...ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.展开更多
基金the National Natural Science Foundation of China(Nos.52071278,51827801)the National Key Research and Development Program of China(No.2018YFA0703603)the Hebei Normal University of Science&Technology,China(No.2021YB012).
文摘An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.
基金Projects(51671166,51434008)supported by the National Natural Science Foundation of ChinaProject(2013CB733000)supported by the National Basic Research Program of China
文摘ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.