期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于密度的kNN分类器训练样本裁剪方法的改进 被引量:13
1
作者 熊忠阳 杨营辉 张玉芳 《计算机应用》 CSCD 北大核心 2010年第3期799-801,817,共4页
在文本分类中,训练集的分布状态会直接影响k-近邻(kNN)分类器的效率和准确率。通过分析基于密度的kNN文本分类器训练样本的裁剪方法,发现它存在两大不足:一是裁剪之后的均匀状态只是以ε为半径的球形区域意义上的均匀状态,而非最理想的... 在文本分类中,训练集的分布状态会直接影响k-近邻(kNN)分类器的效率和准确率。通过分析基于密度的kNN文本分类器训练样本的裁剪方法,发现它存在两大不足:一是裁剪之后的均匀状态只是以ε为半径的球形区域意义上的均匀状态,而非最理想的均匀状态即两两样本之间的距离相等;二是未对低密度区域的样本做任何处理,裁剪之后仍存在大量不均匀的区域。针对这两处不足,提出了以下两点改进:一是优化了裁剪策略,使裁剪之后的训练集更趋于理想的均匀状态;二是实现了对低密度区域样本的补充。通过实验对比,改进后的方法在稳定性和准确率方面都有明显提高。 展开更多
关键词 文本分类 K-近邻 快速分类 样本裁剪 样本补充
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部