期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于生成对抗网络模型的SMAPL4土壤水分产品降尺度分析
1
作者 杨赈 明龙 +3 位作者 李国柱 夏永华 严正飞 李万涛 《干旱地区农业研究》 CSCD 北大核心 2024年第3期245-253,共9页
土壤水分是地表和大气水热过程交换的重要纽带,对于农业生产以及优化种植结构具有重要意义,NASA卫星下的SMAPL4是一种以被动微波遥感技术为手段对土壤湿度监测的产品,具有可穿透云层和全天候监测等能力,但其较低空间分辨率很难满足小尺... 土壤水分是地表和大气水热过程交换的重要纽带,对于农业生产以及优化种植结构具有重要意义,NASA卫星下的SMAPL4是一种以被动微波遥感技术为手段对土壤湿度监测的产品,具有可穿透云层和全天候监测等能力,但其较低空间分辨率很难满足小尺度或小区域范围的实际研究需求。鉴于此,根据云南省姚安县高原灌区特殊的地理位置,引用相关系数推演得出与研究区土壤水分空间分布有关的解释变量,沿用随机森林算法,耦合1 km包含地表温度和归一化植被指数的MODIS地表产品,建立基于RF全局窗口线性回归的1 km级被动微波土壤水分空间降尺度模型;而后堆叠地表温度(LST)、归一化植被指数(NDVI)、降水量(Prec)、地表蒸散量(ET)等4个变量形成条件生成对抗网络框架,并使用均方误差(RMSE)和条件生成对抗性损失函数训练神经网络来建立低分辨率和高分辨率映射关系,随即获得降尺度后土壤水分空间分布结果;最后将实际采样和监测站点提供数据做空间平均聚合后,与SMAPL4原始结果的CGAN、RF降尺度结果进行对比分析。结果表明:LST、NDVI、Prec、ET与土壤水分的相关性均值均大于0.44,具有相关关系,条件生成对抗网络降尺度结果对指标R^(2)和Bias表现效果最好,均值分别为0.7和0.032;RF降尺度结果对RMSE的效果最好,均值为0.006。同比SMAPL4原始数据,RF结果空间分布更为平滑,但极值差异性较大;CGAN结果能有效表征土壤含水空间分布状况,其数据变异性和极值表征能力更为突出。经RMSE与对抗性损失函数训练后,认为0.2~0.28的值域分布为降尺度后的研究区土壤水分数值分布结果。 展开更多
关键词 土壤水分 SMAP 随机森林算法 生成对抗网络 降尺度分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部