We present a photoacoustic imaging system with a linear transducer array scanning in limited-view felds and develop a combined reconstruction algorithm, which is a combination of the limited-field filtered back projec...We present a photoacoustic imaging system with a linear transducer array scanning in limited-view felds and develop a combined reconstruction algorithm, which is a combination of the limited-field filtered back projection (LFBP) algorithm and the simultaneous iterative reconstruction technique (SIRT) algorithm, to reconstruct the optical absorption distribution. In this algorithm, the LFBP algorithm is exploited to reconstruct the original photoacoustic image, and then the SIRT algorithm is used to improve the quality of the final reconstructed photoacoustic image. Numerical simulations with calculated incomplete data validate the reliability of this algorithm and the reconstructed experimental results further demonstrate that the combined reconstruction algorithm effectively reduces the artifacts and blurs and yields better quality of reconstruction image than that with the LFBP algorithm.展开更多
A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic sig...A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.展开更多
We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 ...We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 μs and an incident energy density of 0. 45 mJ/cm^2, and the microwave energy is delivered by a rectangular waveguide with a cross section of (80.01 ± 0.02) × 10^-4 m^2. Compared to single transducer collection, the system with the multi-element linear transducer array can eliminate the mechanical rotation of the transducer, hence can effectively reduce the image blurring and improve the image resolution. Using a phase-controlled focus technique to collect thermoacoustic signals, the data need not be averaged because of a high signal-to-noise ratio, resulting in a total data acquisition time of less than 5 s. The system thus provides a rapid and reliable approach to thermoacoustic imaging, which can potentially be developed as a powerful diagnostic tool for early-stage breast caners.展开更多
The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logar...The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).展开更多
We present a photoacoustic imaging system for rapid high-resolution photoacoustic imaging of blood vessels based on an annular transducer array.The annular transducer array consists of 256 elements arranged along a 30...We present a photoacoustic imaging system for rapid high-resolution photoacoustic imaging of blood vessels based on an annular transducer array.The annular transducer array consists of 256 elements arranged along a 300°arc with a 50-mm radius of curvature,using piezocomposite technology for high sensitivity and high signal-to-noise ratio.An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and a limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images.The experiments with phantom and blood vessels of a chicken are performed and clear photoacoustic images are obtained.The results demonstrate that the photoacoustic imaging system using the annular transducer array holds the potential application in monitoring neovascularization in tumor angiogenesis.展开更多
Photoacoustic tomography (PAT) is presented to in vivo monitor neovascularization in tumour angiogenesis with high resolution and high contrast images in a rat. With a circular scan system, the photoacoustic signal,...Photoacoustic tomography (PAT) is presented to in vivo monitor neovascularization in tumour angiogenesis with high resolution and high contrast images in a rat. With a circular scan system, the photoacoustic signal, generated by laser pulses at a wavelength of 532nm from a Q-switched Nd:YAG laser is captured by a hydrophone with a diameter of 1 mm and a sensitivity of 850nV/Pa. The vascular structure around the rat tumour is imaged clearly, with optimal contrast, because blood has strong absorption near this wavelength. Serial noninvasive photoacoustic images of neovascularization in tumour angiogenesis are also obtained consecutively from a growing tumour implanted under the skin of a rat over a period of two weeks. This work demonstrates that PAT can potentially provide a powerful tool for tumour angiogenesis detection in cancer research. It will bring us closer to clinical applications for tumour diagnosis and treatment monitoring.展开更多
We theoretically investigate the transmission spectra and the field distributions with different defects in the gold nanotube arrays by using the finite-difference time-domain method. It is found that the optical prop...We theoretically investigate the transmission spectra and the field distributions with different defects in the gold nanotube arrays by using the finite-difference time-domain method. It is found that the optical properties of the nanotube arrays are strongly influenced by different defects. When there are no defects in the central nanotube, the values of peaks located at both sides of the photonic band gap have their maxima. Based on the distributions of electric field component Ex and the total energy distribution of the electric and the magnetic field, we show that mainly a dipole field distribution is exhibited for the plasmon mode at the long-wavelength edge of the band gap but higher order modes of the composite are excited at the short-wavelength edge of the band gap. The plasmon resonant modes can also be controlled by introducing defects.展开更多
We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included ...We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included in the investigation. The numerical calculation is carried out, and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced.展开更多
文摘We present a photoacoustic imaging system with a linear transducer array scanning in limited-view felds and develop a combined reconstruction algorithm, which is a combination of the limited-field filtered back projection (LFBP) algorithm and the simultaneous iterative reconstruction technique (SIRT) algorithm, to reconstruct the optical absorption distribution. In this algorithm, the LFBP algorithm is exploited to reconstruct the original photoacoustic image, and then the SIRT algorithm is used to improve the quality of the final reconstructed photoacoustic image. Numerical simulations with calculated incomplete data validate the reliability of this algorithm and the reconstructed experimental results further demonstrate that the combined reconstruction algorithm effectively reduces the artifacts and blurs and yields better quality of reconstruction image than that with the LFBP algorithm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304129 and 11374094, the Hunan-Provincial Natural Science Foundation under Grant No 14JJ3122, the Science and Technology Pillar Program of Jiangxi Province under Grant No 2009BSA12700, and the Natural Science Foundation of Hunan University of Technology under Grant No 2011HZX16.
文摘A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378043 and 30470494, and the Natural Science Foundation of Guangdong Province (015012 04010394 2004B10401011).
文摘We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 μs and an incident energy density of 0. 45 mJ/cm^2, and the microwave energy is delivered by a rectangular waveguide with a cross section of (80.01 ± 0.02) × 10^-4 m^2. Compared to single transducer collection, the system with the multi-element linear transducer array can eliminate the mechanical rotation of the transducer, hence can effectively reduce the image blurring and improve the image resolution. Using a phase-controlled focus technique to collect thermoacoustic signals, the data need not be averaged because of a high signal-to-noise ratio, resulting in a total data acquisition time of less than 5 s. The system thus provides a rapid and reliable approach to thermoacoustic imaging, which can potentially be developed as a powerful diagnostic tool for early-stage breast caners.
基金Project(11374094)supported by the National Natural Science Foundation of ChinaProject(2013HZX23)supported by Natural Science Foundation of Hunan University of Technology,ChinaProject(2015JJ3060)supported by Natural Science Foundation of Hunan Province of China
文摘The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).
基金Supported in part by Hunan Provincial Education Bureau(GJJ10243,09C314)the Science and Technology Pillar Program of Jiangxi Province(2009BSA12700).
文摘We present a photoacoustic imaging system for rapid high-resolution photoacoustic imaging of blood vessels based on an annular transducer array.The annular transducer array consists of 256 elements arranged along a 300°arc with a 50-mm radius of curvature,using piezocomposite technology for high sensitivity and high signal-to-noise ratio.An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and a limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images.The experiments with phantom and blood vessels of a chicken are performed and clear photoacoustic images are obtained.The results demonstrate that the photoacoustic imaging system using the annular transducer array holds the potential application in monitoring neovascularization in tumor angiogenesis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378043 and 30470494, and the Natural Science Foundation of Guangdong Province under Grant Nos 015012, 04010394 and 2004B10401011.
文摘Photoacoustic tomography (PAT) is presented to in vivo monitor neovascularization in tumour angiogenesis with high resolution and high contrast images in a rat. With a circular scan system, the photoacoustic signal, generated by laser pulses at a wavelength of 532nm from a Q-switched Nd:YAG laser is captured by a hydrophone with a diameter of 1 mm and a sensitivity of 850nV/Pa. The vascular structure around the rat tumour is imaged clearly, with optimal contrast, because blood has strong absorption near this wavelength. Serial noninvasive photoacoustic images of neovascularization in tumour angiogenesis are also obtained consecutively from a growing tumour implanted under the skin of a rat over a period of two weeks. This work demonstrates that PAT can potentially provide a powerful tool for tumour angiogenesis detection in cancer research. It will bring us closer to clinical applications for tumour diagnosis and treatment monitoring.
基金Project supported by the Scientific Research Foundation of Hunan Provincial Education Department,China (Grant Nos. 11C0425 and 09C314)the Natural Science Foundation of Hunan Province,China (Grant No. 10JJ3088)+1 种基金the Major Program for the Research Foundation of Education Bureau of Hunan Province,China (Grant No. 10A026)the National Natural Science Foundation of China (Grant No. 11164007)
文摘We theoretically investigate the transmission spectra and the field distributions with different defects in the gold nanotube arrays by using the finite-difference time-domain method. It is found that the optical properties of the nanotube arrays are strongly influenced by different defects. When there are no defects in the central nanotube, the values of peaks located at both sides of the photonic band gap have their maxima. Based on the distributions of electric field component Ex and the total energy distribution of the electric and the magnetic field, we show that mainly a dipole field distribution is exhibited for the plasmon mode at the long-wavelength edge of the band gap but higher order modes of the composite are excited at the short-wavelength edge of the band gap. The plasmon resonant modes can also be controlled by introducing defects.
基金Project supported by the National Natural Science Foundation of China(Grant No.50874041)the Funds of Hunan Educational Bureau,China(Grant No.09C314)
文摘We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included in the investigation. The numerical calculation is carried out, and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced.