为了保持原始功能磁共振成像(function Magnetic Resonance Imaging, fMRI)数据的空间结构实现噪声体素移除,提高聚类的效果,提出了一种基于遗传算法的简易优化算法.以广义线性模型(Generalize Linear Model, GLM)方法获取的数据作为大...为了保持原始功能磁共振成像(function Magnetic Resonance Imaging, fMRI)数据的空间结构实现噪声体素移除,提高聚类的效果,提出了一种基于遗传算法的简易优化算法.以广义线性模型(Generalize Linear Model, GLM)方法获取的数据作为大脑视觉刺激的真实激活模板,基于遗传算法对5位被测者的fMRI数据图像进行分析.取不同阈值(0.1~0.9)时交叉率和变异率为0且具有唯一的最优值为模糊C均值聚类算法(Fuzzy C-Means, FCM)结果,依据真实模板验证聚类结果的准确度.结果表明,相比原始的FCM方法,改变阈值的大小可以使FCM聚类结果的准确度得到有效提高.通过简易优化遗传算法,可以确定最佳阈值为0.6.展开更多
文摘为了保持原始功能磁共振成像(function Magnetic Resonance Imaging, fMRI)数据的空间结构实现噪声体素移除,提高聚类的效果,提出了一种基于遗传算法的简易优化算法.以广义线性模型(Generalize Linear Model, GLM)方法获取的数据作为大脑视觉刺激的真实激活模板,基于遗传算法对5位被测者的fMRI数据图像进行分析.取不同阈值(0.1~0.9)时交叉率和变异率为0且具有唯一的最优值为模糊C均值聚类算法(Fuzzy C-Means, FCM)结果,依据真实模板验证聚类结果的准确度.结果表明,相比原始的FCM方法,改变阈值的大小可以使FCM聚类结果的准确度得到有效提高.通过简易优化遗传算法,可以确定最佳阈值为0.6.