The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied usin...Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.展开更多
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.
基金Projects(51675092,51775099)supported by the National Natural Science Foundation of ChinaProjects(E2018501030,E2018501033,E2018501032)supported by the Natural Science Foundation of Hebei Province,China.
文摘Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.