Hybrid direct sequence and slow frequency hopping spread spectrum multiple access systems (Hybrid DS/SFH SSMA) operating through nonselective slow Rayleigh fading channels was investigated. Multipath and Multiple acce...Hybrid direct sequence and slow frequency hopping spread spectrum multiple access systems (Hybrid DS/SFH SSMA) operating through nonselective slow Rayleigh fading channels was investigated. Multipath and Multiple access interference was taken into account. Expressions of the average error probability for the system were derived. Analytical and numerical results on the average probability of error were presented for the system examined. Random signature sequences and hopping patterns were employed for the system. The numerical results show the effects of the value of M for M ary frequency shift keying (MFSK) modulation and Reed Solomon (RS) coding on the system’s performance. The comparison between RS coded system and noncode system shows that error correction coding is essential to improve the system’s performance.展开更多
文摘Hybrid direct sequence and slow frequency hopping spread spectrum multiple access systems (Hybrid DS/SFH SSMA) operating through nonselective slow Rayleigh fading channels was investigated. Multipath and Multiple access interference was taken into account. Expressions of the average error probability for the system were derived. Analytical and numerical results on the average probability of error were presented for the system examined. Random signature sequences and hopping patterns were employed for the system. The numerical results show the effects of the value of M for M ary frequency shift keying (MFSK) modulation and Reed Solomon (RS) coding on the system’s performance. The comparison between RS coded system and noncode system shows that error correction coding is essential to improve the system’s performance.