移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据...移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。展开更多
对于移动机器人研究领域来说,现阶段研究热点是如何在全球定位系统失效的情况下同时定位与地图构建(simultaneous localization and mapping,SLAM)。对于单个机器人SLAM已经有很多解决方案,然而当转移到多机器人平台时,对于存在的问题...对于移动机器人研究领域来说,现阶段研究热点是如何在全球定位系统失效的情况下同时定位与地图构建(simultaneous localization and mapping,SLAM)。对于单个机器人SLAM已经有很多解决方案,然而当转移到多机器人平台时,对于存在的问题又面临很多新的挑战。本文首先分析了多机器人SLAM,着重探讨了多机器人SLAM后端优化算法。分析了多机器人SLAM研究过程中遇到的不同问题,以及现阶段这些问题的处理算法。讨论了多机器人SLAM中扩展卡尔曼滤波、扩展信息滤波、粒子滤波、基于图优化的SLAM、地图融合等后端优化算法的研究现状,分析了算法的优缺点,并提出了未来发展的方向。展开更多
文摘移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。
文摘对于移动机器人研究领域来说,现阶段研究热点是如何在全球定位系统失效的情况下同时定位与地图构建(simultaneous localization and mapping,SLAM)。对于单个机器人SLAM已经有很多解决方案,然而当转移到多机器人平台时,对于存在的问题又面临很多新的挑战。本文首先分析了多机器人SLAM,着重探讨了多机器人SLAM后端优化算法。分析了多机器人SLAM研究过程中遇到的不同问题,以及现阶段这些问题的处理算法。讨论了多机器人SLAM中扩展卡尔曼滤波、扩展信息滤波、粒子滤波、基于图优化的SLAM、地图融合等后端优化算法的研究现状,分析了算法的优缺点,并提出了未来发展的方向。