双有源桥(Dual Active Bridge,DAB)在需要高效能量双向流动的工作场景有广泛的应用。在高开关频率工作时,变换器开关器件结电容充放电时间无法忽略,导致扩展移相控制下DAB零电压开通(Zero Voltage Switching,ZVS)范围断续。通过分析扩...双有源桥(Dual Active Bridge,DAB)在需要高效能量双向流动的工作场景有广泛的应用。在高开关频率工作时,变换器开关器件结电容充放电时间无法忽略,导致扩展移相控制下DAB零电压开通(Zero Voltage Switching,ZVS)范围断续。通过分析扩展移相控制下双有源桥DC-DC变换器工作模态,建立高开关频率工况下DAB变换器数学模型,提出一种利用磁化电流扩宽ZVS范围的方法。在此基础上,结合电感电流应力优化算法,提出一种适用于高频工况应用的电流应力优化下的软开关控制策略。采用该控制策略,可以有效减小导通损耗,消除开关损耗,显著提升高开关频率下的变换器效率。搭建400 kHz实验样机,验证控制策略有效性。展开更多
Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less com...Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters.展开更多
文摘双有源桥(Dual Active Bridge,DAB)在需要高效能量双向流动的工作场景有广泛的应用。在高开关频率工作时,变换器开关器件结电容充放电时间无法忽略,导致扩展移相控制下DAB零电压开通(Zero Voltage Switching,ZVS)范围断续。通过分析扩展移相控制下双有源桥DC-DC变换器工作模态,建立高开关频率工况下DAB变换器数学模型,提出一种利用磁化电流扩宽ZVS范围的方法。在此基础上,结合电感电流应力优化算法,提出一种适用于高频工况应用的电流应力优化下的软开关控制策略。采用该控制策略,可以有效减小导通损耗,消除开关损耗,显著提升高开关频率下的变换器效率。搭建400 kHz实验样机,验证控制策略有效性。
基金partially supported by National Natural Science Foundation of China(No.52377155)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERI-KF2021001)Hebei University of Technology。
文摘Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters.