An ECR ion thruster with a diameter of 5 cm has been developed and tested. Four different antenna positions were experimentally and numerically investigated, and the results suggest that the optimal location for the a...An ECR ion thruster with a diameter of 5 cm has been developed and tested. Four different antenna positions were experimentally and numerically investigated, and the results suggest that the optimal location for the antenna is where it is perfectly surrounded by the electron cyclotron resonance layer. We also evaluated two different antenna configurations, and found that the star configuration is preferable to the circular configuration, and also that the circular antenna is only 40% as efficient as the star antenna. The experimental curve of the ion beam current and voltage agrees with the fitting results from the analytic solution. The simulation of the magnetic topology in the discharging chamber with different back yoke heights indicates that it needs to be further verified.展开更多
The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with th...The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with the increase of the plasma temperature. The significant discriminations among them appear at the plasma temperature lower than 2.5 eV, and the maximum gap of the pulsed inductive plasma accelerated efficiency is approximately 2.5%.Moreover, the pulsed inductive plasma accelerated efficiency is absolutely related to the dynamic impedance parameters, such as voltage, inductance, capacitance and flow rate. However, the distribution of the efficiency as a function of plasma temperature with three resistivity models has nothing to do with the dynamic impedance parameter.展开更多
基金supported in part by the fund of Science and Technology on Vacuum Technology and the Physics Laboratory of Lanzhou Institute of Physics under grant YSC0715in part by the National Natural Science Foundation of China under grant 62601210in part by the Civil Aerospace Technology Research Project under grant D010509
文摘An ECR ion thruster with a diameter of 5 cm has been developed and tested. Four different antenna positions were experimentally and numerically investigated, and the results suggest that the optimal location for the antenna is where it is perfectly surrounded by the electron cyclotron resonance layer. We also evaluated two different antenna configurations, and found that the star configuration is preferable to the circular configuration, and also that the circular antenna is only 40% as efficient as the star antenna. The experimental curve of the ion beam current and voltage agrees with the fitting results from the analytic solution. The simulation of the magnetic topology in the discharging chamber with different back yoke heights indicates that it needs to be further verified.
基金Supported by the Fund of Science and Technology on Vacuum Technology and Physics Laboratory of Lanzhou Institute of Physics under Grant No YSC0715the National Natural Science Foundation of China under Grant No 62601210the Civil Aerospace Technology Research Project under Grant No D010509
文摘The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with the increase of the plasma temperature. The significant discriminations among them appear at the plasma temperature lower than 2.5 eV, and the maximum gap of the pulsed inductive plasma accelerated efficiency is approximately 2.5%.Moreover, the pulsed inductive plasma accelerated efficiency is absolutely related to the dynamic impedance parameters, such as voltage, inductance, capacitance and flow rate. However, the distribution of the efficiency as a function of plasma temperature with three resistivity models has nothing to do with the dynamic impedance parameter.