为探究不同铟(In)组分In_(x)Ga_(1-x)N势垒对绿光激光二极管光电性能的影响,本文采用SiLENSe(simulator of light emitters based on nitride semiconductors)仿真软件对一系列具有不同In组分In_(x)Ga_(1-x)N势垒的激光二极管进行研究,...为探究不同铟(In)组分In_(x)Ga_(1-x)N势垒对绿光激光二极管光电性能的影响,本文采用SiLENSe(simulator of light emitters based on nitride semiconductors)仿真软件对一系列具有不同In组分In_(x)Ga_(1-x)N势垒的激光二极管进行研究,结果发现In_(x)Ga_(1-x)N势垒中In组分最佳值为3%,此时结构的斜率效率最高,内部光学损耗最低,光学限制因子最大,性能最优。在具有In_(0.03)Ga_(0.97_N势垒的多量子阱结构基础上,设计了一种组分阶梯(composition step-graded,CSG)InGaN势垒多量子阱结构,提高了激光二极管的斜率效率和电光转换效率,增加了光场限制能力。仿真结果表明,当注入电流为120 mA时,具有CSG InGaN势垒的多量子阱结构,电光转换效率从17.7%提高至19.9%,斜率效率从1.09 mW/mA增加到1.14 mW/mA,光学限制因子从1.58%增加到1.62%。本文的研究为制备高功率GaN基绿光激光二极管提供了理论指导和数据支撑。展开更多
设计了中心波长为520 nm的AlGaInN/InGaN应变补偿分布布拉格反射镜(DBR)结构,通过调节组分参数实现应变补偿,使DBR整体应变为0,采用传输矩阵法,计算了Al_(0.7)Ga_(0.3-x)In x N/InGaN DBR、Al_(0.8)Ga_(0.2-x)In x N/InGaN DBR、Al_(0.9...设计了中心波长为520 nm的AlGaInN/InGaN应变补偿分布布拉格反射镜(DBR)结构,通过调节组分参数实现应变补偿,使DBR整体应变为0,采用传输矩阵法,计算了Al_(0.7)Ga_(0.3-x)In x N/InGaN DBR、Al_(0.8)Ga_(0.2-x)In x N/InGaN DBR、Al_(0.9)Ga_(0.1-x)In x N/InGaN DBR的反射光谱。通过对DBR结构参数进行对比,优化了其结构和反射性能。首先对比高低折射率层生长顺序,发现对于Al_(0.8)Ga_(0.14)In_(0.06)N/In_(0.123)Ga_(0.877)N DBR,先生长高折射率层时,反射率高达99.61%,而先生长低折射率层时,反射率仅为97.73%;然后对比奇数层DBR和偶数层DBR,发现两者的反射谱几乎重合,没有显著区别;通过研究DBR对数对反射率的影响,发现对数在20~30对时,反射率随着对数的增加明显上升,30~40对时反射率增长缓慢;最后研究了材料组分对反射谱的影响,发现Al组分高的DBR折射率差大,反射性能更优,而相同Al组分的AlGaInN中In含量越低反射率越高。考虑到DBR制备过程中可能出现的厚度和组分偏差,模拟了厚度和组分出现偏差时反射谱的变化,发现高低折射率层厚度每增加或减少1 nm,反射谱红移或蓝移4~5 nm;而组分的偏差使高反射带带宽和中心波长处反射率发生明显变化。本文的研究为AlGaInN/InGaN DBR的设计和制备提供了一定的理论参考。展开更多
文摘为探究不同铟(In)组分In_(x)Ga_(1-x)N势垒对绿光激光二极管光电性能的影响,本文采用SiLENSe(simulator of light emitters based on nitride semiconductors)仿真软件对一系列具有不同In组分In_(x)Ga_(1-x)N势垒的激光二极管进行研究,结果发现In_(x)Ga_(1-x)N势垒中In组分最佳值为3%,此时结构的斜率效率最高,内部光学损耗最低,光学限制因子最大,性能最优。在具有In_(0.03)Ga_(0.97_N势垒的多量子阱结构基础上,设计了一种组分阶梯(composition step-graded,CSG)InGaN势垒多量子阱结构,提高了激光二极管的斜率效率和电光转换效率,增加了光场限制能力。仿真结果表明,当注入电流为120 mA时,具有CSG InGaN势垒的多量子阱结构,电光转换效率从17.7%提高至19.9%,斜率效率从1.09 mW/mA增加到1.14 mW/mA,光学限制因子从1.58%增加到1.62%。本文的研究为制备高功率GaN基绿光激光二极管提供了理论指导和数据支撑。
文摘设计了中心波长为520 nm的AlGaInN/InGaN应变补偿分布布拉格反射镜(DBR)结构,通过调节组分参数实现应变补偿,使DBR整体应变为0,采用传输矩阵法,计算了Al_(0.7)Ga_(0.3-x)In x N/InGaN DBR、Al_(0.8)Ga_(0.2-x)In x N/InGaN DBR、Al_(0.9)Ga_(0.1-x)In x N/InGaN DBR的反射光谱。通过对DBR结构参数进行对比,优化了其结构和反射性能。首先对比高低折射率层生长顺序,发现对于Al_(0.8)Ga_(0.14)In_(0.06)N/In_(0.123)Ga_(0.877)N DBR,先生长高折射率层时,反射率高达99.61%,而先生长低折射率层时,反射率仅为97.73%;然后对比奇数层DBR和偶数层DBR,发现两者的反射谱几乎重合,没有显著区别;通过研究DBR对数对反射率的影响,发现对数在20~30对时,反射率随着对数的增加明显上升,30~40对时反射率增长缓慢;最后研究了材料组分对反射谱的影响,发现Al组分高的DBR折射率差大,反射性能更优,而相同Al组分的AlGaInN中In含量越低反射率越高。考虑到DBR制备过程中可能出现的厚度和组分偏差,模拟了厚度和组分出现偏差时反射谱的变化,发现高低折射率层厚度每增加或减少1 nm,反射谱红移或蓝移4~5 nm;而组分的偏差使高反射带带宽和中心波长处反射率发生明显变化。本文的研究为AlGaInN/InGaN DBR的设计和制备提供了一定的理论参考。