随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方...随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方法。首先,对配网电压序列的相关性进行定性分析,提出利用电压时序序列作为分析识别的数据基础;其次,采用改进的自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)对电压序列进行降维处理,提取能够反映电压特征的低维向量;然后利用改进的OPTICS算法对所提取的特征向量进行聚类分析,识别台区的户变关系和相别关系;最后,基于实际的台区数据进行算例分析,验证了所提方法的准确性。展开更多
文摘随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方法。首先,对配网电压序列的相关性进行定性分析,提出利用电压时序序列作为分析识别的数据基础;其次,采用改进的自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)对电压序列进行降维处理,提取能够反映电压特征的低维向量;然后利用改进的OPTICS算法对所提取的特征向量进行聚类分析,识别台区的户变关系和相别关系;最后,基于实际的台区数据进行算例分析,验证了所提方法的准确性。