换相失败可能引起直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)闭锁,严重影响电网的安全稳定运行。多馈入直流输电系统中电气耦合紧密,控制响应造成多回LCC-HVDC交互影响,使换相失败的产生机...换相失败可能引起直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)闭锁,严重影响电网的安全稳定运行。多馈入直流输电系统中电气耦合紧密,控制响应造成多回LCC-HVDC交互影响,使换相失败的产生机理变得更加复杂。现有后续换相失败抑制方法多以单回LCC-HVDC为对象,无法兼顾自身换相恢复和相邻直流换相失败抑制的需求。为此,提出了一种适应于多馈入直流输电系统的后续换相失败抑制方法。分析了LCC-HVDC首次换相失败恢复过程中逆变站控制系统的响应时序及条件,提出了考虑故障严重程度和LCC-HVDC控制影响的后续换相失败安全裕度评估方法,进而提出了基于电压安全裕度的后续换相失败抑制方法,并在CIGRE HVDC标准测试系统验证了所提方法的有效性。仿真结果表明,所提方法根据换流母线电压自适应地调节直流电流,能够有效降低多馈入直流输电系统中无功电压耦合影响,有效抑制相邻回LCC-HVDC发生后续换相失败。展开更多
针对极端灾害天气下配电网的故障恢复问题,计及极端灾害的时空演变特性,提出了一种利用移动储能(mobile energy storage system,MESS)的灵活性主动参与抑制合环冲击电流,辅助配电网故障恢复的策略。首先,建立了暴风雨等不同气象灾害条...针对极端灾害天气下配电网的故障恢复问题,计及极端灾害的时空演变特性,提出了一种利用移动储能(mobile energy storage system,MESS)的灵活性主动参与抑制合环冲击电流,辅助配电网故障恢复的策略。首先,建立了暴风雨等不同气象灾害条件下配电线路的故障率统计模型。其次,将复杂交通网与配电网进行耦合,建立了以最小化MESS调度时空成本的上层预布局模型。然后,分析了MESS出力对冲击电流的影响,以抑制合环冲击电流、最大化负荷恢复率和最小化MESS调度成本为目标,构建了MESS参与网络重构的下层调度模型。最后,在改进的IEEE 123节点系统中进行测试,验证了MESS对配网故障恢复安全性的提升效果。结果表明,采用MESS主动参与调控能够有效应对移动的极端气象灾害引发的配电网动态故障恢复问题,并抑制合解环过程中电流的波动,提升网络重构方案的可行性和增强配电网的韧性。展开更多
文摘换相失败可能引起直流输电系统(line commutated converter based high voltage direct current,LCC-HVDC)闭锁,严重影响电网的安全稳定运行。多馈入直流输电系统中电气耦合紧密,控制响应造成多回LCC-HVDC交互影响,使换相失败的产生机理变得更加复杂。现有后续换相失败抑制方法多以单回LCC-HVDC为对象,无法兼顾自身换相恢复和相邻直流换相失败抑制的需求。为此,提出了一种适应于多馈入直流输电系统的后续换相失败抑制方法。分析了LCC-HVDC首次换相失败恢复过程中逆变站控制系统的响应时序及条件,提出了考虑故障严重程度和LCC-HVDC控制影响的后续换相失败安全裕度评估方法,进而提出了基于电压安全裕度的后续换相失败抑制方法,并在CIGRE HVDC标准测试系统验证了所提方法的有效性。仿真结果表明,所提方法根据换流母线电压自适应地调节直流电流,能够有效降低多馈入直流输电系统中无功电压耦合影响,有效抑制相邻回LCC-HVDC发生后续换相失败。
文摘针对极端灾害天气下配电网的故障恢复问题,计及极端灾害的时空演变特性,提出了一种利用移动储能(mobile energy storage system,MESS)的灵活性主动参与抑制合环冲击电流,辅助配电网故障恢复的策略。首先,建立了暴风雨等不同气象灾害条件下配电线路的故障率统计模型。其次,将复杂交通网与配电网进行耦合,建立了以最小化MESS调度时空成本的上层预布局模型。然后,分析了MESS出力对冲击电流的影响,以抑制合环冲击电流、最大化负荷恢复率和最小化MESS调度成本为目标,构建了MESS参与网络重构的下层调度模型。最后,在改进的IEEE 123节点系统中进行测试,验证了MESS对配网故障恢复安全性的提升效果。结果表明,采用MESS主动参与调控能够有效应对移动的极端气象灾害引发的配电网动态故障恢复问题,并抑制合解环过程中电流的波动,提升网络重构方案的可行性和增强配电网的韧性。