病害是影响农作物品质和产量的重要因素,随着计算机视觉、光学、遥感和物联网技术的进步,基于图像的作物病害自动识别研究发展迅速.为深入了解全球作物病害图像识别的相关研究进展,利用文献计量分析方法对Web of Science核心合集(SCI-E)...病害是影响农作物品质和产量的重要因素,随着计算机视觉、光学、遥感和物联网技术的进步,基于图像的作物病害自动识别研究发展迅速.为深入了解全球作物病害图像识别的相关研究进展,利用文献计量分析方法对Web of Science核心合集(SCI-E)2002-2022年间作物病害图像识别研究领域发表的相关文献进行分析.结果表明:作物病害图像识别研究呈明显上升趋势;学科领域涉及计算机科学、农学、植物科学、工程、环境生态学、遥感等,体现出明显的综合性和交叉性特点;中国、美国、印度、德国等国家发文数量最多,整体而言各国之间均存在较为密切的交流与合作,其中中美之间合作最为密切;在发文量排在世界前10的研究机构中有6家来自中国,展现出很强的整体优势;MAHLEIN A K、HUANG W J和KHAN M A是发文量排在前3的核心作者;Computers and Electronics in Agriculture、Frontiers in Plant Science、Remote Sensing等期刊为主要发表载体;作物病害图像数据的获取、基于机器学习的作物病害图像识别以及基于深度学习的作物病害图像识别是近20年该研究领域的主要热点和重点.作物病害图像识别的研究深受先进技术推动,尤其是在当前人工智能技术背景下方兴未艾,是面向智慧农业的重要组成部分.而当前数据样本规模偏小,相似症状的不同病害精确识别困难,模型可解释性和泛化性有限等问题依旧制约其进一步发展.构建基于生成式大模型的大规模作物病害数据集,加强多模态数据融合,提升模型的可解释性和泛化性,开展实时监测识别等内容将是未来作物病害图像识别的主要研究方向.展开更多
研究一种基于多模块多电平双向DC-DC变换器的超级电容储能系统,该系统可有助于减小超级电容单体电压低与应用场合电压高间的矛盾。超级电容组间的均压控制是该系统稳定运行的关键之一。对超级电容组的均压控制和储能系统能量管理策略进...研究一种基于多模块多电平双向DC-DC变换器的超级电容储能系统,该系统可有助于减小超级电容单体电压低与应用场合电压高间的矛盾。超级电容组间的均压控制是该系统稳定运行的关键之一。对超级电容组的均压控制和储能系统能量管理策略进行分析和设计。利用双向变换器的小信号模型分析超级电容储能系统电流控制与超级电容组间均压控制的关系,设计多模块多电平双向DC-DC变换器的双闭环控制策略,在稳定控制网侧电感电流的同时实现超级电容组间电压均衡的解耦控制。进一步,根据母线电压变化及超级电容荷电水平(state of charge,SOC)提出储能系统能量控制策略。系统仿真和实验验证了所提出的基于MMC双向变换器的超级电容储能系统控制策略的有效性。展开更多
文摘病害是影响农作物品质和产量的重要因素,随着计算机视觉、光学、遥感和物联网技术的进步,基于图像的作物病害自动识别研究发展迅速.为深入了解全球作物病害图像识别的相关研究进展,利用文献计量分析方法对Web of Science核心合集(SCI-E)2002-2022年间作物病害图像识别研究领域发表的相关文献进行分析.结果表明:作物病害图像识别研究呈明显上升趋势;学科领域涉及计算机科学、农学、植物科学、工程、环境生态学、遥感等,体现出明显的综合性和交叉性特点;中国、美国、印度、德国等国家发文数量最多,整体而言各国之间均存在较为密切的交流与合作,其中中美之间合作最为密切;在发文量排在世界前10的研究机构中有6家来自中国,展现出很强的整体优势;MAHLEIN A K、HUANG W J和KHAN M A是发文量排在前3的核心作者;Computers and Electronics in Agriculture、Frontiers in Plant Science、Remote Sensing等期刊为主要发表载体;作物病害图像数据的获取、基于机器学习的作物病害图像识别以及基于深度学习的作物病害图像识别是近20年该研究领域的主要热点和重点.作物病害图像识别的研究深受先进技术推动,尤其是在当前人工智能技术背景下方兴未艾,是面向智慧农业的重要组成部分.而当前数据样本规模偏小,相似症状的不同病害精确识别困难,模型可解释性和泛化性有限等问题依旧制约其进一步发展.构建基于生成式大模型的大规模作物病害数据集,加强多模态数据融合,提升模型的可解释性和泛化性,开展实时监测识别等内容将是未来作物病害图像识别的主要研究方向.
文摘研究一种基于多模块多电平双向DC-DC变换器的超级电容储能系统,该系统可有助于减小超级电容单体电压低与应用场合电压高间的矛盾。超级电容组间的均压控制是该系统稳定运行的关键之一。对超级电容组的均压控制和储能系统能量管理策略进行分析和设计。利用双向变换器的小信号模型分析超级电容储能系统电流控制与超级电容组间均压控制的关系,设计多模块多电平双向DC-DC变换器的双闭环控制策略,在稳定控制网侧电感电流的同时实现超级电容组间电压均衡的解耦控制。进一步,根据母线电压变化及超级电容荷电水平(state of charge,SOC)提出储能系统能量控制策略。系统仿真和实验验证了所提出的基于MMC双向变换器的超级电容储能系统控制策略的有效性。