Sm0.2Ce0.8O1.9 (SDC) electrolyte was prepared by a modified solid state method at relatively low sintering temperatures without any sintering promoters. The phase composition and microstructure of the electrolytes w...Sm0.2Ce0.8O1.9 (SDC) electrolyte was prepared by a modified solid state method at relatively low sintering temperatures without any sintering promoters. The phase composition and microstructure of the electrolytes were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) technologies. A relative density of SDC electrolyte sintered at 1300 ℃ reached 97.3%and the mean SDC grain size was about 770 nm. Their ionic conductivity and thermal expansion coefficient were also measured by electrochemical workstation and dilatometer. The electrolyte attained a high conductivity of 5×10^-2 S/cm at 800 ℃ with an activation energy of 1.03 eV and a proper thermal expansion coefficient of 12.6×10^-6 K^-1.展开更多
基金supported by Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(IRT1146)the Program of Research Innovation for University Graduate Students of Jiangsu Province(CXLX13_408)the Priority Academic Development Program of Jiangsu Higher Education Institutions,P.R.China
文摘Sm0.2Ce0.8O1.9 (SDC) electrolyte was prepared by a modified solid state method at relatively low sintering temperatures without any sintering promoters. The phase composition and microstructure of the electrolytes were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) technologies. A relative density of SDC electrolyte sintered at 1300 ℃ reached 97.3%and the mean SDC grain size was about 770 nm. Their ionic conductivity and thermal expansion coefficient were also measured by electrochemical workstation and dilatometer. The electrolyte attained a high conductivity of 5×10^-2 S/cm at 800 ℃ with an activation energy of 1.03 eV and a proper thermal expansion coefficient of 12.6×10^-6 K^-1.