目的:胶质瘤是最常见的颅内原发中枢神经系统肿瘤,胶质瘤的分级对临床治疗及随访方案的选择、预后的评估有重要指导意义。本研究目的在于探讨基于影像组学的logistic回归模型预测胶质瘤病理分级的可行性。方法:回顾性收集2012年1月至201...目的:胶质瘤是最常见的颅内原发中枢神经系统肿瘤,胶质瘤的分级对临床治疗及随访方案的选择、预后的评估有重要指导意义。本研究目的在于探讨基于影像组学的logistic回归模型预测胶质瘤病理分级的可行性。方法:回顾性收集2012年1月至2018年12月经手术病理切片证实为胶质瘤的146例患者。手动分割患者增强T_(1)加权成像(contrast-enhanced T_(1)-weighted imaging,T_(1)WI+C)图像中的胶质瘤区域,形成3D感兴趣区(region of interest,ROI);提取41个影像特征;采用最小绝对收缩和选择运算(least absolute shrinkage and selection operator,LASSO)二元logistic回归法筛选与胶质瘤病理分级最相关的特征并计算影像组学得分(radiomics score,Rad-score);采用单因素logistic回归建模方法建立预测模型;用受试者操作特征(receiver operating characteristic,ROC)曲线评估模型的区分能力,评估指标为曲线下面积(area under the curve,AUC)。利用Hosmer-Lemeshow检验衡量模型预测的准确性。结果:筛选出5个与胶质瘤病理分级最相关的特征,用这5个特征构建的预测胶质瘤病理分级的logistic回归模型的ROC曲线AUC为0.919,具有很好的区分能力,其校准曲线经Hosmer-Lemeshow检验,与理想曲线的差异无统计学意义(P=0.808),预测准确性高。结论:基于影像组学的logistic回归模型可以有效地对胶质瘤病理分级进行预测,有望成为术前预测胶质瘤分级的辅助方法。展开更多
文摘目的:胶质瘤是最常见的颅内原发中枢神经系统肿瘤,胶质瘤的分级对临床治疗及随访方案的选择、预后的评估有重要指导意义。本研究目的在于探讨基于影像组学的logistic回归模型预测胶质瘤病理分级的可行性。方法:回顾性收集2012年1月至2018年12月经手术病理切片证实为胶质瘤的146例患者。手动分割患者增强T_(1)加权成像(contrast-enhanced T_(1)-weighted imaging,T_(1)WI+C)图像中的胶质瘤区域,形成3D感兴趣区(region of interest,ROI);提取41个影像特征;采用最小绝对收缩和选择运算(least absolute shrinkage and selection operator,LASSO)二元logistic回归法筛选与胶质瘤病理分级最相关的特征并计算影像组学得分(radiomics score,Rad-score);采用单因素logistic回归建模方法建立预测模型;用受试者操作特征(receiver operating characteristic,ROC)曲线评估模型的区分能力,评估指标为曲线下面积(area under the curve,AUC)。利用Hosmer-Lemeshow检验衡量模型预测的准确性。结果:筛选出5个与胶质瘤病理分级最相关的特征,用这5个特征构建的预测胶质瘤病理分级的logistic回归模型的ROC曲线AUC为0.919,具有很好的区分能力,其校准曲线经Hosmer-Lemeshow检验,与理想曲线的差异无统计学意义(P=0.808),预测准确性高。结论:基于影像组学的logistic回归模型可以有效地对胶质瘤病理分级进行预测,有望成为术前预测胶质瘤分级的辅助方法。