为了减小非视距(Non Line of Sight,NLOS)误差对移动台定位精度的影响,提出一种基于遗传优化后向传播(Back Propagation,BP)神经网络的无线定位算法。先利用遗传算法优化BP神经网络的初始权值,再利用优化后的GA-BP神经网络修正到达时间...为了减小非视距(Non Line of Sight,NLOS)误差对移动台定位精度的影响,提出一种基于遗传优化后向传播(Back Propagation,BP)神经网络的无线定位算法。先利用遗传算法优化BP神经网络的初始权值,再利用优化后的GA-BP神经网络修正到达时间差(Time Difference Of Arrival,TDOA)测量值,最后使用Chan氏算法确定移动台的位置,以避免由于神经网络初始权值的随机性所带来的网络震荡,克服网络容易陷入局部解的问题。仿真结果表明,新算法能够实现移动台的静态定位,并且性能优于传统BP神经网络与最小二乘(Least Square,LS)算法。展开更多
文摘为了减小非视距(Non Line of Sight,NLOS)误差对移动台定位精度的影响,提出一种基于遗传优化后向传播(Back Propagation,BP)神经网络的无线定位算法。先利用遗传算法优化BP神经网络的初始权值,再利用优化后的GA-BP神经网络修正到达时间差(Time Difference Of Arrival,TDOA)测量值,最后使用Chan氏算法确定移动台的位置,以避免由于神经网络初始权值的随机性所带来的网络震荡,克服网络容易陷入局部解的问题。仿真结果表明,新算法能够实现移动台的静态定位,并且性能优于传统BP神经网络与最小二乘(Least Square,LS)算法。