The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-bac...The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.展开更多
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603)
文摘The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.