学术全文本中包含了多种知识元,对这些知识元进行挖掘与组织,可以有效提升学术资源的利用效率。通过学术知识图谱的构建,将论文中各类隐性“知识元”串联起来,不但可以节省研究者获取知识点的时间,还可以通过知识图谱内的网络社区进行...学术全文本中包含了多种知识元,对这些知识元进行挖掘与组织,可以有效提升学术资源的利用效率。通过学术知识图谱的构建,将论文中各类隐性“知识元”串联起来,不但可以节省研究者获取知识点的时间,还可以通过知识图谱内的网络社区进行知识点的扩充。通过系统而全面的文献调研,本文从宏观、中观和微观3个维度出发,确定了18种学术论文中的关键知识元,并将学术全文本中的描述信息作为知识元对象,设计出学术知识图谱概念框架。然后,选取Journal of the Association for Information Science and Technology(JASIST)期刊的515篇学术全文本,对每篇论文中的关键知识元进行人工标注与基于深度学习的知识元抽取研究。研究内容包括该类知识元在人工标注过程中是否会遇到问题、在自动抽取时是否会达到预期值,从而对参与图谱构建的知识元进行筛选。最终筛选出9种知识元,包括数学公式、软件工具、数据源、具体模型、表、图、研究展望、研究问题和研究结果,与题录数据中的知识元共同生成由头知识元、关系、尾知识元组成的三元组,存入图数据库。最后,对该图谱进行可视化的评估与知识元检索研究,证明了其可行性与可扩展性。研究结果表明,学术全文本中的部分知识元适合大规模的自动化标注,而且各类知识元可以通过互相链接形成密集的知识社区,并具备知识元搜索等功能。展开更多
情报学术语承载了情报学科基础知识与核心概念。从概念维度梳理与分析情报学术语对推动学科发展、助力下游知识挖掘任务具有重要意义。面对数量快速增长的科技文献,自动术语抽取替代了人工筛选,但现有方法严重依赖大规模标注数据集,难...情报学术语承载了情报学科基础知识与核心概念。从概念维度梳理与分析情报学术语对推动学科发展、助力下游知识挖掘任务具有重要意义。面对数量快速增长的科技文献,自动术语抽取替代了人工筛选,但现有方法严重依赖大规模标注数据集,难以迁移至低资源场景。本文设计了一种生成式情报学术语抽取方法(generative term extraction for information science,GTX-IS),将传统基于序列标注的抽取式任务转化为序列到序列的生成式任务。结合小样本学习策略与有监督微调,提升面向特定任务的文本生成能力,能够在低资源有标签数据集场景下较为精准地抽取情报学术语。对于抽取结果,本文进一步开展了情报学领域术语发现及多维知识挖掘。综合运用全文科学计量与信息计量方法,从术语自身、术语间关联、时间信息等维度,对术语的出现频次、生命周期、共现信息等进行统计分析与知识挖掘。采用社会网络分析方法,结合时间维度特征,从术语角度出发,完善期刊的动态简介,探究情报学研究热点、演变历程和未来发展趋势。本文方法在术语抽取实验中的表现超越了全部13种主流生成式和抽取式模型,展现出较强的小样本学习能力,为领域信息抽取提供了新的思路。展开更多
文摘学术全文本中包含了多种知识元,对这些知识元进行挖掘与组织,可以有效提升学术资源的利用效率。通过学术知识图谱的构建,将论文中各类隐性“知识元”串联起来,不但可以节省研究者获取知识点的时间,还可以通过知识图谱内的网络社区进行知识点的扩充。通过系统而全面的文献调研,本文从宏观、中观和微观3个维度出发,确定了18种学术论文中的关键知识元,并将学术全文本中的描述信息作为知识元对象,设计出学术知识图谱概念框架。然后,选取Journal of the Association for Information Science and Technology(JASIST)期刊的515篇学术全文本,对每篇论文中的关键知识元进行人工标注与基于深度学习的知识元抽取研究。研究内容包括该类知识元在人工标注过程中是否会遇到问题、在自动抽取时是否会达到预期值,从而对参与图谱构建的知识元进行筛选。最终筛选出9种知识元,包括数学公式、软件工具、数据源、具体模型、表、图、研究展望、研究问题和研究结果,与题录数据中的知识元共同生成由头知识元、关系、尾知识元组成的三元组,存入图数据库。最后,对该图谱进行可视化的评估与知识元检索研究,证明了其可行性与可扩展性。研究结果表明,学术全文本中的部分知识元适合大规模的自动化标注,而且各类知识元可以通过互相链接形成密集的知识社区,并具备知识元搜索等功能。
文摘情报学术语承载了情报学科基础知识与核心概念。从概念维度梳理与分析情报学术语对推动学科发展、助力下游知识挖掘任务具有重要意义。面对数量快速增长的科技文献,自动术语抽取替代了人工筛选,但现有方法严重依赖大规模标注数据集,难以迁移至低资源场景。本文设计了一种生成式情报学术语抽取方法(generative term extraction for information science,GTX-IS),将传统基于序列标注的抽取式任务转化为序列到序列的生成式任务。结合小样本学习策略与有监督微调,提升面向特定任务的文本生成能力,能够在低资源有标签数据集场景下较为精准地抽取情报学术语。对于抽取结果,本文进一步开展了情报学领域术语发现及多维知识挖掘。综合运用全文科学计量与信息计量方法,从术语自身、术语间关联、时间信息等维度,对术语的出现频次、生命周期、共现信息等进行统计分析与知识挖掘。采用社会网络分析方法,结合时间维度特征,从术语角度出发,完善期刊的动态简介,探究情报学研究热点、演变历程和未来发展趋势。本文方法在术语抽取实验中的表现超越了全部13种主流生成式和抽取式模型,展现出较强的小样本学习能力,为领域信息抽取提供了新的思路。