By analyzing the components of Reynolds stresses of implicit algebraic stress model(IASM) in this paper, that Reynolds stresses in buoyant turbulent flows were produced by both strain and buoyancy is considered. Conse...By analyzing the components of Reynolds stresses of implicit algebraic stress model(IASM) in this paper, that Reynolds stresses in buoyant turbulent flows were produced by both strain and buoyancy is considered. Consequently, a nonlinear anisotropy buoyant turbulence model was developed by applying linearity of equilibrium hypothesis to Reynolds stress transports. The model avoids numerical singularity and its reliability is verified by the comparisons between predictions and experimental data.展开更多
A depth averaged nonlinear k ε model for turbulent flows in complex geometries has been developed in a boundary fitted coordinate system. The SIMPLEC procedure is used to develop an economical discrete method for ...A depth averaged nonlinear k ε model for turbulent flows in complex geometries has been developed in a boundary fitted coordinate system. The SIMPLEC procedure is used to develop an economical discrete method for staggered grids to analyze flows in a 90° bend. This paper describes how to change a program in rectangular coordinate into a boundary fitted coordinate. The results compare well with experimental data for flow in a meandering channel showing the efficiency of the model and the discrete method.展开更多
文摘By analyzing the components of Reynolds stresses of implicit algebraic stress model(IASM) in this paper, that Reynolds stresses in buoyant turbulent flows were produced by both strain and buoyancy is considered. Consequently, a nonlinear anisotropy buoyant turbulence model was developed by applying linearity of equilibrium hypothesis to Reynolds stress transports. The model avoids numerical singularity and its reliability is verified by the comparisons between predictions and experimental data.
文摘A depth averaged nonlinear k ε model for turbulent flows in complex geometries has been developed in a boundary fitted coordinate system. The SIMPLEC procedure is used to develop an economical discrete method for staggered grids to analyze flows in a 90° bend. This paper describes how to change a program in rectangular coordinate into a boundary fitted coordinate. The results compare well with experimental data for flow in a meandering channel showing the efficiency of the model and the discrete method.