期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于通道组合-数据对齐-多尺度全局CNN的MI-EEG分类
1
作者 武岩 满建志 +1 位作者 宋雨 李奇 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第3期102-112,共11页
由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel c... 由于运动想象脑机接口(MI-BCI)范式不需要视觉刺激,应用MI-BCI范式在提高人机交互系统舒适度方面具有重要意义。为实现辅助设备的异步控制,提高模型的鲁棒性,减少通道使用数量以降低BCI系统输入的复杂性,提出一种基于通道组合(channel combination,CC)-数据对齐(euclidean space data alignment,EA)-多尺度全局卷积神经网络(multiscale global convolutional neural network,MGCNN)的运动想象脑电分类方法。通过引入大脑静息状态下的脑电信号,扩展MI-BCI输出指令集;利用CC将22通道脑电数据重构为左右对称通道加中间通道的3通道形式,重构后的数据经过EA方法规范后作为网络输入;构建多尺度卷积模块与全局卷积模块,并行提取脑电信号的局部特征和ERS/ERD全局特征;利用迁移学习提升模型的解码能力。结果表明:该方法在BCI Competition IV 2a数据集上达到了99.28%的平均准确率和0.99的Kappa值,提高了运动想象脑电分类精度,为在线异步运动想象脑机接口的应用与发展作出了贡献。 展开更多
关键词 运动想象 脑机接口 通道组合 卷积神经网络 数据对齐
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部