如何利用社会网络信息来寻找一个合作高效、高质量的团队,已成为热门的研究话题.但现有团队生成问题中对个体拥有技能的度量大多都采用0-1方式,而在实际应用中如何界定个体是否拥有该技能的方法会在很大程度上影响团队完成任务的效率....如何利用社会网络信息来寻找一个合作高效、高质量的团队,已成为热门的研究话题.但现有团队生成问题中对个体拥有技能的度量大多都采用0-1方式,而在实际应用中如何界定个体是否拥有该技能的方法会在很大程度上影响团队完成任务的效率.另外在目前的基于社会网络的团队生成方法研究中,计算个体间关系强度时只考虑个体间曾经合作任务的数目,并没有深入挖掘社会网络条件下个体间的社会关系类别以及个体自身的其他属性,这些因素很大程度上也会影响个体间的社会关系,进而影响个体间的团队合作.针对以上问题,该文首先给出团队生成问题的具体定义和相关概念,给出技能贡献度的定义,并利用社会网络个体间的关系类别和个体间对应社会属性相似度引入一种关系模型来进一步量化团队成员个体间的关系强度;然后根据团队的不同形式分别进行了无领导者团队生成方法的研究和有领导者团队生成方法的研究,并分别提出了MCSTFA算法(Minimum Covering Steiner-based Team Forming Algorithm)和MSCTFA算法(Minimum Set Covering-based Team Forming Algorithm)来寻找最佳无领导者团队以及提出MLDTFA算法(Minimum Leader Distance based Team Forming Algorithm)来寻找最佳领导者和最佳团队.最后,利用DBLP数据集设计和实现实验以验证上述所有方法的可行性和有效性,并从团队合作代价、团队成员数量、团队连通性以及社会网络影响因素对算法的影响对比结果等方面进行比较和分析,实验结果验证了文中所提算法的可行性和高效性.展开更多
在现有的图聚类方法中,大多数聚类方法只关注图的拓扑结构或节点属性而忽略另一方面.为解决这一问题,相关文献中提出了基于图的结构与属性的图聚类方法.但这些聚类方法存在建立的图模型不准确、聚类效果不理想、算法执行效率低等缺点....在现有的图聚类方法中,大多数聚类方法只关注图的拓扑结构或节点属性而忽略另一方面.为解决这一问题,相关文献中提出了基于图的结构与属性的图聚类方法.但这些聚类方法存在建立的图模型不准确、聚类效果不理想、算法执行效率低等缺点.针对上述图聚类方法中存在的问题,提出了一种基于结构-属性的时空对象图聚类方法(spatio-temporal object graph clustering algorithm based on structure and attribute,STSA).首先提出了属性加权图模型,在此基础上建立了结构-属性的统一度量方法,并采用随机游走模型技术将节点间结构与属性关系转换为相应的相似度矩阵,结合图结构-属性关系及相似度矩阵,采用信息传递算法对图进行聚类,解决了现有图聚类方法中所存在的问题,最后通过实验验证了提出的STSA方法的正确性和有效性.展开更多
现有的图像特征表达大多使用低层语义特征(如颜色、纹理等)细粒度地比较图像的相似度,然而医生就诊更多依据图像在局部区域高层语义特征(如是否病变、病变类型等)的差异粗粒度地判断图像的相似程度。针对现有的医学图像特征表达忽略了...现有的图像特征表达大多使用低层语义特征(如颜色、纹理等)细粒度地比较图像的相似度,然而医生就诊更多依据图像在局部区域高层语义特征(如是否病变、病变类型等)的差异粗粒度地判断图像的相似程度。针对现有的医学图像特征表达忽略了医学图像特有的高层语义特征,致使医学图像聚类效果不佳的问题,提出了一种融合医学图像纹理特征和特有形态学特征的多模态特征医学图像聚类方法。首先一方面提出使用纹理特征融合方法表示医学图像全局底层语义特征;另一方面提出使用图像分割的感兴趣区域(region of interest,ROI)的形态学描述作为形态学特征表示医学图像的局部高层语义信息。其次结合提出的相似性度量方法分别计算脑CT图像两类特征间的相似度。最后利用多核学习方法学习特征融合权重,并在多核谱聚类实验上验证了该方法的有效性。展开更多
文摘如何利用社会网络信息来寻找一个合作高效、高质量的团队,已成为热门的研究话题.但现有团队生成问题中对个体拥有技能的度量大多都采用0-1方式,而在实际应用中如何界定个体是否拥有该技能的方法会在很大程度上影响团队完成任务的效率.另外在目前的基于社会网络的团队生成方法研究中,计算个体间关系强度时只考虑个体间曾经合作任务的数目,并没有深入挖掘社会网络条件下个体间的社会关系类别以及个体自身的其他属性,这些因素很大程度上也会影响个体间的社会关系,进而影响个体间的团队合作.针对以上问题,该文首先给出团队生成问题的具体定义和相关概念,给出技能贡献度的定义,并利用社会网络个体间的关系类别和个体间对应社会属性相似度引入一种关系模型来进一步量化团队成员个体间的关系强度;然后根据团队的不同形式分别进行了无领导者团队生成方法的研究和有领导者团队生成方法的研究,并分别提出了MCSTFA算法(Minimum Covering Steiner-based Team Forming Algorithm)和MSCTFA算法(Minimum Set Covering-based Team Forming Algorithm)来寻找最佳无领导者团队以及提出MLDTFA算法(Minimum Leader Distance based Team Forming Algorithm)来寻找最佳领导者和最佳团队.最后,利用DBLP数据集设计和实现实验以验证上述所有方法的可行性和有效性,并从团队合作代价、团队成员数量、团队连通性以及社会网络影响因素对算法的影响对比结果等方面进行比较和分析,实验结果验证了文中所提算法的可行性和高效性.
文摘在现有的图聚类方法中,大多数聚类方法只关注图的拓扑结构或节点属性而忽略另一方面.为解决这一问题,相关文献中提出了基于图的结构与属性的图聚类方法.但这些聚类方法存在建立的图模型不准确、聚类效果不理想、算法执行效率低等缺点.针对上述图聚类方法中存在的问题,提出了一种基于结构-属性的时空对象图聚类方法(spatio-temporal object graph clustering algorithm based on structure and attribute,STSA).首先提出了属性加权图模型,在此基础上建立了结构-属性的统一度量方法,并采用随机游走模型技术将节点间结构与属性关系转换为相应的相似度矩阵,结合图结构-属性关系及相似度矩阵,采用信息传递算法对图进行聚类,解决了现有图聚类方法中所存在的问题,最后通过实验验证了提出的STSA方法的正确性和有效性.
文摘现有的图像特征表达大多使用低层语义特征(如颜色、纹理等)细粒度地比较图像的相似度,然而医生就诊更多依据图像在局部区域高层语义特征(如是否病变、病变类型等)的差异粗粒度地判断图像的相似程度。针对现有的医学图像特征表达忽略了医学图像特有的高层语义特征,致使医学图像聚类效果不佳的问题,提出了一种融合医学图像纹理特征和特有形态学特征的多模态特征医学图像聚类方法。首先一方面提出使用纹理特征融合方法表示医学图像全局底层语义特征;另一方面提出使用图像分割的感兴趣区域(region of interest,ROI)的形态学描述作为形态学特征表示医学图像的局部高层语义信息。其次结合提出的相似性度量方法分别计算脑CT图像两类特征间的相似度。最后利用多核学习方法学习特征融合权重,并在多核谱聚类实验上验证了该方法的有效性。