针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故...针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。展开更多
针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和...针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的智能故障诊断方法,首先探索待分解信号前后端的数据规律,选取匹配波形完成端点延拓,然后利用局部特征尺度分解(Local Characteristic scale Decomposition,LCD)得到各去除端点效应的内禀尺度分量(Intrinsic Scale Component,ISC),最后输入到基于多模型融合的多变量预测模型(Multi-model Fusion-Variable Predictive Model based Class Discriminate,MFVPMCD)分类器中进行概率状态判定.实验分析结果表明,所提方法能有效地对滚动轴承的工作状态进行识别.展开更多
提出一种基于拉普拉斯特征映射流形学习算法(Laplacian Eigenmaps,简称LE)和改进多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)的滚动轴承故障诊断方法,首先对振动信号进行局部特征尺度分解(Local cha...提出一种基于拉普拉斯特征映射流形学习算法(Laplacian Eigenmaps,简称LE)和改进多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)的滚动轴承故障诊断方法,首先对振动信号进行局部特征尺度分解(Local characteristic scale decomposition,简称LCD),并提取各内禀尺度分量(Intrinsic scale component,简称ISC)的特征构造高维特征向量,接着采用LE算法挖掘出高维数据中包含有效信息且具有内在规律性的低维特征,然后输入到基于Kriging的改进多变量预测模型(Kriging-variable predictive model based class discriminate,简称KVPMCD)分类器中进行模式识别。该方法充分利用并有效结合了LCD在信号处理、LE在挖掘特征信息和KVPMCD在模式识别方面的优势,实现了滚动轴承故障特征提取到故障识别的全程诊断。实验分析结果表明:基于LE算法和KVPMCD的分类方法可以有效地对滚动轴承的工作状态和故障类型进行识别。展开更多
针对以往模式识别方法的不足及特征值贡献度的问题,提出了基于特征加权的代理判别模型(agent discriminate model based feature weighted,ADMFW)模式识别方法。该方法的核心在于利用加权因子获取加权特征,并采用代理模型建立加权特征...针对以往模式识别方法的不足及特征值贡献度的问题,提出了基于特征加权的代理判别模型(agent discriminate model based feature weighted,ADMFW)模式识别方法。该方法的核心在于利用加权因子获取加权特征,并采用代理模型建立加权特征之间的关系函数,即首先计算特征值的权值因子,评估特征值的显著度,进而对每个特征值予以权值;然后利用加权特征和代理模型建立预测模型;最后采用预测模型对未知样本进行识别诊断。对滚动轴承实测数据的分析结果表明,ADMFW可以有效地对滚动轴承的工作状态和故障类型进行识别。展开更多
针对滚动轴承振动信号的状态特征及特征数据中存在'异常值'的现象,提出了基于优化加权代理判别模型(Agent discriminate model based optimization weighted,ADMOW)的模式识别方法。该方法首先通过计算样本特征值的类相似度对...针对滚动轴承振动信号的状态特征及特征数据中存在'异常值'的现象,提出了基于优化加权代理判别模型(Agent discriminate model based optimization weighted,ADMOW)的模式识别方法。该方法首先通过计算样本特征值的类相似度对特征值进行评价,并依据评价结果对特征值赋予权值,以此弱化'异常值'导致模型出现偏差的问题;然后利用粒子群优化(Particle swarm optimization,PSO)算法对所建立的模型参数进行优化,得到更加准确可靠的分类模型;最后采用建立的优化加权代理预测模型对待测样本进行识别。滚动轴承实验结果表明,与以往的模式识别方法相比,该方法能有效地提高识别准确率。展开更多
文摘针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。
文摘针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的智能故障诊断方法,首先探索待分解信号前后端的数据规律,选取匹配波形完成端点延拓,然后利用局部特征尺度分解(Local Characteristic scale Decomposition,LCD)得到各去除端点效应的内禀尺度分量(Intrinsic Scale Component,ISC),最后输入到基于多模型融合的多变量预测模型(Multi-model Fusion-Variable Predictive Model based Class Discriminate,MFVPMCD)分类器中进行概率状态判定.实验分析结果表明,所提方法能有效地对滚动轴承的工作状态进行识别.
文摘提出一种基于拉普拉斯特征映射流形学习算法(Laplacian Eigenmaps,简称LE)和改进多变量预测模型(Variable predictive model based class discriminate,简称VPMCD)的滚动轴承故障诊断方法,首先对振动信号进行局部特征尺度分解(Local characteristic scale decomposition,简称LCD),并提取各内禀尺度分量(Intrinsic scale component,简称ISC)的特征构造高维特征向量,接着采用LE算法挖掘出高维数据中包含有效信息且具有内在规律性的低维特征,然后输入到基于Kriging的改进多变量预测模型(Kriging-variable predictive model based class discriminate,简称KVPMCD)分类器中进行模式识别。该方法充分利用并有效结合了LCD在信号处理、LE在挖掘特征信息和KVPMCD在模式识别方面的优势,实现了滚动轴承故障特征提取到故障识别的全程诊断。实验分析结果表明:基于LE算法和KVPMCD的分类方法可以有效地对滚动轴承的工作状态和故障类型进行识别。
文摘针对以往模式识别方法的不足及特征值贡献度的问题,提出了基于特征加权的代理判别模型(agent discriminate model based feature weighted,ADMFW)模式识别方法。该方法的核心在于利用加权因子获取加权特征,并采用代理模型建立加权特征之间的关系函数,即首先计算特征值的权值因子,评估特征值的显著度,进而对每个特征值予以权值;然后利用加权特征和代理模型建立预测模型;最后采用预测模型对未知样本进行识别诊断。对滚动轴承实测数据的分析结果表明,ADMFW可以有效地对滚动轴承的工作状态和故障类型进行识别。
文摘针对滚动轴承振动信号的状态特征及特征数据中存在'异常值'的现象,提出了基于优化加权代理判别模型(Agent discriminate model based optimization weighted,ADMOW)的模式识别方法。该方法首先通过计算样本特征值的类相似度对特征值进行评价,并依据评价结果对特征值赋予权值,以此弱化'异常值'导致模型出现偏差的问题;然后利用粒子群优化(Particle swarm optimization,PSO)算法对所建立的模型参数进行优化,得到更加准确可靠的分类模型;最后采用建立的优化加权代理预测模型对待测样本进行识别。滚动轴承实验结果表明,与以往的模式识别方法相比,该方法能有效地提高识别准确率。