电池均衡是优化动力电池性能,提高使用寿命,增强动态工作过程安全性的一项关键技术.针对锂动力电池单体数量多,测量与控制数据量庞大等问题,本文将锂动力电池分为区域模块和全局模块两层,进而提出一种融合区域均衡与全局均衡的多层次协...电池均衡是优化动力电池性能,提高使用寿命,增强动态工作过程安全性的一项关键技术.针对锂动力电池单体数量多,测量与控制数据量庞大等问题,本文将锂动力电池分为区域模块和全局模块两层,进而提出一种融合区域均衡与全局均衡的多层次协调均衡方法.通过开关电容区域均衡电路与反激式变压器全局均衡电路控制充放电过程的开关通断,实现双向均衡目标;在此基础上,考虑不同电池荷电状态(State of Charge,SOC)分布情况下锂电池的受电能力差异,以多模式充电策略为均衡前提条件,使用SOC关键参数作为均衡判据,实现系统充电与非充电过程的主动双向自均衡.实验结果表明,所提出的双向自均衡方法能实现高精度的均衡目标,且能耗较低.展开更多
文摘电池均衡是优化动力电池性能,提高使用寿命,增强动态工作过程安全性的一项关键技术.针对锂动力电池单体数量多,测量与控制数据量庞大等问题,本文将锂动力电池分为区域模块和全局模块两层,进而提出一种融合区域均衡与全局均衡的多层次协调均衡方法.通过开关电容区域均衡电路与反激式变压器全局均衡电路控制充放电过程的开关通断,实现双向均衡目标;在此基础上,考虑不同电池荷电状态(State of Charge,SOC)分布情况下锂电池的受电能力差异,以多模式充电策略为均衡前提条件,使用SOC关键参数作为均衡判据,实现系统充电与非充电过程的主动双向自均衡.实验结果表明,所提出的双向自均衡方法能实现高精度的均衡目标,且能耗较低.