高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一...高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一种基于模型后门的联邦学习水印(federated learning watermark based on backdoor,FLWB)方案,能够允许各参与训练的用户在其本地模型中分别嵌入私有水印,再通过云端的模型聚合操作将私有后门水印映射到全局模型作为联邦学习的全局水印.之后提出分步训练方法增强各私有后门水印在全局模型的表达效果,使得FLWB方案能够在不影响全局模型精度的前提下容纳各参与用户的私有水印.理论分析证明了FLWB方案的安全性,实验验证分步训练方法能够让全局模型在仅造成1%主任务精度损失的情况下有效容纳参与训练用户的私有水印.最后,采用模型压缩攻击和模型微调攻击对FLWB方案进行攻击测试,其结果表明FLWB方案在模型压缩到30%时仍能保留80%以上的水印,在4种不同的微调攻击下能保留90%以上的水印,具有很好的鲁棒性.展开更多
预训练模型容易受到外部敌手实施的模型微调和模型剪枝等攻击,导致它的完整性被破坏。针对这一问题,提出一种针对黑盒模型的脆弱指纹框架FFWAS(Fragile Fingerprint With Adversarial Samples)。首先,提出一种无先验知识的模型复制框架,...预训练模型容易受到外部敌手实施的模型微调和模型剪枝等攻击,导致它的完整性被破坏。针对这一问题,提出一种针对黑盒模型的脆弱指纹框架FFWAS(Fragile Fingerprint With Adversarial Samples)。首先,提出一种无先验知识的模型复制框架,而FFWAS为每一位用户创建独立的模型副本;其次,利用黑盒方法在模型边界放置脆弱指纹触发集,若模型发生修改,边界发生变化,触发集将被错误分类;最后,用户借助模型副本上的脆弱指纹触发集对模型的完整性进行验证,若触发集的识别率低于预设阈值,则意味着模型完整性已被破坏。基于2种公开数据集MNIST和CIFAR-10对FFWAS的有效性和脆弱性进行实验分析,结果表明,在模型微调和剪枝攻击下,FFWAS的指纹识别率相较于完整模型均明显下降并低于设定阈值;与基于模型唯一性和脆弱签名的深度神经网络认证框架(DeepAuth)相比,FFWAS的触发集与原始样本在2个数据集上的相似性分别提高了约22%和16%,表明FFWAS具有更好的隐蔽性。展开更多
针对当前云计算环境中因缺乏多级安全机制而使结构化文档容易产生信息泄露和非授权访问等问题,提出基于行为的多级访问控制(action-based multilevel access control model,AMAC)模型并给出策略的形式化描述.利用信息流中的不干扰理论建...针对当前云计算环境中因缺乏多级安全机制而使结构化文档容易产生信息泄露和非授权访问等问题,提出基于行为的多级访问控制(action-based multilevel access control model,AMAC)模型并给出策略的形式化描述.利用信息流中的不干扰理论建立AMAC不干扰模型,并证明AMAC模型中多级访问控制策略的安全性.与已有访问控制模型的比较与分析表明,AMAC模型既可以利用角色、上下文和用户访问行为以提高访问控制策略的灵活性,还可以依据用户,用户访问行为和结构化文档的安全等级实现多级安全机制.展开更多
文摘高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一种基于模型后门的联邦学习水印(federated learning watermark based on backdoor,FLWB)方案,能够允许各参与训练的用户在其本地模型中分别嵌入私有水印,再通过云端的模型聚合操作将私有后门水印映射到全局模型作为联邦学习的全局水印.之后提出分步训练方法增强各私有后门水印在全局模型的表达效果,使得FLWB方案能够在不影响全局模型精度的前提下容纳各参与用户的私有水印.理论分析证明了FLWB方案的安全性,实验验证分步训练方法能够让全局模型在仅造成1%主任务精度损失的情况下有效容纳参与训练用户的私有水印.最后,采用模型压缩攻击和模型微调攻击对FLWB方案进行攻击测试,其结果表明FLWB方案在模型压缩到30%时仍能保留80%以上的水印,在4种不同的微调攻击下能保留90%以上的水印,具有很好的鲁棒性.
文摘预训练模型容易受到外部敌手实施的模型微调和模型剪枝等攻击,导致它的完整性被破坏。针对这一问题,提出一种针对黑盒模型的脆弱指纹框架FFWAS(Fragile Fingerprint With Adversarial Samples)。首先,提出一种无先验知识的模型复制框架,而FFWAS为每一位用户创建独立的模型副本;其次,利用黑盒方法在模型边界放置脆弱指纹触发集,若模型发生修改,边界发生变化,触发集将被错误分类;最后,用户借助模型副本上的脆弱指纹触发集对模型的完整性进行验证,若触发集的识别率低于预设阈值,则意味着模型完整性已被破坏。基于2种公开数据集MNIST和CIFAR-10对FFWAS的有效性和脆弱性进行实验分析,结果表明,在模型微调和剪枝攻击下,FFWAS的指纹识别率相较于完整模型均明显下降并低于设定阈值;与基于模型唯一性和脆弱签名的深度神经网络认证框架(DeepAuth)相比,FFWAS的触发集与原始样本在2个数据集上的相似性分别提高了约22%和16%,表明FFWAS具有更好的隐蔽性。
文摘针对当前云计算环境中因缺乏多级安全机制而使结构化文档容易产生信息泄露和非授权访问等问题,提出基于行为的多级访问控制(action-based multilevel access control model,AMAC)模型并给出策略的形式化描述.利用信息流中的不干扰理论建立AMAC不干扰模型,并证明AMAC模型中多级访问控制策略的安全性.与已有访问控制模型的比较与分析表明,AMAC模型既可以利用角色、上下文和用户访问行为以提高访问控制策略的灵活性,还可以依据用户,用户访问行为和结构化文档的安全等级实现多级安全机制.