数据分发服务(Data distribution service,DDS)是一种可靠的实时数据通信中间件标准,它是面向基于发布/订阅模型的分布式环境,在各个领域得到了广泛应用,但现有研究涉及DDS安全技术的成果较少,而在实际应用中发布订阅系统存在多种安全...数据分发服务(Data distribution service,DDS)是一种可靠的实时数据通信中间件标准,它是面向基于发布/订阅模型的分布式环境,在各个领域得到了广泛应用,但现有研究涉及DDS安全技术的成果较少,而在实际应用中发布订阅系统存在多种安全威胁。为了建立灵活可靠的安全机制来确保发布订阅信息的安全性,提出一种以数据为中心的访问控制方案。在属性加密的基础上,对访问树结构进行优化处理,结合发布订阅环境增加属性信任机制。之后采用制定属性连接式与授权策略的方式对发布订阅信息进行加密匹配,并建立DDS访问控制模型来控制发布订阅系统内信息的交互,实现数据的安全分发。经过实验验证,该方案既能够应对DDS存在的几种安全威胁,保障发布订阅信息的机密性,也能够实现系统对特定信息的访问控制,并且发布者订阅者不需要共享密钥,减少了密钥管理的开销。展开更多
Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed ...Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.展开更多
文摘数据分发服务(Data distribution service,DDS)是一种可靠的实时数据通信中间件标准,它是面向基于发布/订阅模型的分布式环境,在各个领域得到了广泛应用,但现有研究涉及DDS安全技术的成果较少,而在实际应用中发布订阅系统存在多种安全威胁。为了建立灵活可靠的安全机制来确保发布订阅信息的安全性,提出一种以数据为中心的访问控制方案。在属性加密的基础上,对访问树结构进行优化处理,结合发布订阅环境增加属性信任机制。之后采用制定属性连接式与授权策略的方式对发布订阅信息进行加密匹配,并建立DDS访问控制模型来控制发布订阅系统内信息的交互,实现数据的安全分发。经过实验验证,该方案既能够应对DDS存在的几种安全威胁,保障发布订阅信息的机密性,也能够实现系统对特定信息的访问控制,并且发布者订阅者不需要共享密钥,减少了密钥管理的开销。
文摘Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.