Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge...Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.展开更多
During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforeme...During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.展开更多
文摘Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.
基金Supported by the National Natural Science Foundation of China under Grant No 51577011
文摘During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.