针对旋转机械失效机理复杂,特征信息差异大,导致的传统诊断模型依赖先验知识,准确率低,适应性差的难题.提出一种基于随机量化数据增强-随机LSTM(Long Short Term Memory)块映射特征提取-随机配置网络(Randomized Quantization-Randomize...针对旋转机械失效机理复杂,特征信息差异大,导致的传统诊断模型依赖先验知识,准确率低,适应性差的难题.提出一种基于随机量化数据增强-随机LSTM(Long Short Term Memory)块映射特征提取-随机配置网络(Randomized Quantization-Randomized LSTM Block Mapping Method-Stochastic Configuration Network,简称RQ-RLBM-SCN)的旋转机械故障诊断方法.首先,为了解决失效机械特征信息小子样,训练样本不足的难题,使用随机量化数据增强将多传感器原始数据样本进行扩充,从而提高模型的适应性、准确率和缓解过拟合问题.其次用随机LSTM块映射方法来提取特征,解决SCN不擅长提取时序数据特征难的问题;然后使用随机配置网络(SCN)进行分类,SCN可以动态配置参数,无需反向传播来更新参数,在保证学习率的同时,还有效的避免梯度爆炸或梯度消失等问题.采用RQ-RLBM-SCN方法能准确识别出轴承和齿轮故障,在10次重复实验中,轴承和齿轮的多传感器数据集上的平均准确率分别达到99.80%、98.75%均高于原始SCN、TSC-SCN、VMD-SCN、SVM和KNN故障诊断方法;该方法可以为建立旋转机械的健康监测模型提供动态方法和诊断思路.展开更多