以齐齐哈尔市辖区为研究区域,利用分类回归树(Classification and Regression Tree,CART)算法从训练样本数据集中挖掘分类规则,集成遥感影像的光谱特征、纹理特征和地学辅助数据建立研究区的决策树模型.用实测的GPS样本点对分类结果进...以齐齐哈尔市辖区为研究区域,利用分类回归树(Classification and Regression Tree,CART)算法从训练样本数据集中挖掘分类规则,集成遥感影像的光谱特征、纹理特征和地学辅助数据建立研究区的决策树模型.用实测的GPS样本点对分类结果进行精度验证,并与最大似然监督分类方法(Maximum Likelihood Classification,MLC)进行对比.结果表明,基于CART的决策树分类结果的总精度和Kappa系数分别为82.24%和0.77,分类精度较MLC监督分类方法有明显提高,有较好的分类效果.展开更多